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1 Introduction

The missing data issue in large factor models has gained considerable interest recently in various
strands of the literature, including matrix completion, causal inference and factor analysis with
unbalanced panel. See Banbura and Modugno (2014), Athey, Bayati, Doudchenko, Imbens and
Khosravi (2021), Bai and Ng (2021), Jin, Miao and Su (2021), Chernozhukov, Hansen, Liao and
Zhu (2023), Xiong and Pelger (2023), among others. The common objective of this literature is to
estimate the factors and loadings consistently and establish the corresponding asymptotic properties.
The difference is that depending on the targeted applications, the literature consider different missing
patterns and different estimation algorithms. Although these methods are practically useful, the
connections between them are unclear. Moreover, these methods are all closely related to the least
squares estimation using the observed data, but the asymptotic theory for the least squares estimation
itself is still unclear.

This paper studies the least squares estimation and develops a unified inferential theory for
factor models with missing data that handles completely random heterogenous missing, selection on
covariates/factors/loadings, block/staggered missing, mixed frequency, ragged edge and some other
patterns in a single framework. These missing patterns include all patterns studied in the above
papers and also some new patterns. We establish the average convergence rates of the estimated
factor space and loading space, the limit distributions of the estimated factors and loadings, the limit
distributions of linear combinations of the elements of the low rank matrix, and the limit distributions
of the parameter estimates in the factor-augmented regressions, as N (the number of units) and T
(the number of time periods) tend to infinity jointly. These results generalize those in Bai (2003)
and Bai and Ng (2006) to factor models under general missing data patterns.

In terms of estimation, since principal component analysis (PCA) is no longer applicable under
random missing, we propose to use the EM algorithm with the nuclear norm regularized estimator
(NN) as the initial value and coin our estimator as a nuclear norm EM estimator (NN-EM). Since
the EM algorithm is guaranteed to converge to local maximum (or minimum) and the nuclear norm
regularized estimator is consistent and easy to compute, the proposed NN-EM algorithm is guaranteed
to converge to the least squares solution. The EM algorithm is always a popular choice to handle
missing data for factor models since Stock and Watson (2002). Nevertheless, it is unclear whether
it always converges to the global maximum (minimum), and under what missing patterns the EM
estimator is asymptotically valid, except for the homogenous random missing case studied by Jin et

al. (2021). Owur results show that actually the estimator calculated by the EM algorithm has the



same asymptotic properties as the complete data case under a wide range of missing patterns, as

long as the initial estimator is consistent on average in terms of Frobenius norm.

1.1 Intuition

Our asymptotic theory is built on the fact that the Hessian matrix for the objective function of
the factor model is asymptotically diagonal and the tensor of the third order derivatives is sparse.
More specifically, the diagonal elements (blocks) of the Hessian are of order O,(N) or Op(T") while
the nondiagonal elements (blocks) are of order O,(1). This ensures that the estimator of a fixed
dimensional target parameter is insensitive to the estimation errors of the remaining high dimensional
parameters. Moreover, we show that the estimation errors in the least squares estimators of the factors
and loadings are small enough on average. This, in conjunction with the asymptotically diagonal
Hessian matrix, implies that the asymptotic distributions of the estimated factors (resp., loadings)
are the same as if the loadings (resp., factors) were known, which is also observed in Bai’s (2003)
theory with complete data.

Since the complete data case can be considered as a special case of factor models with missing
data, our asymptotic theory also explains Bai’s (2003) results from the perspective of approximately
diagonal Hessian. In fact, the general idea of diagonalization/orthogonality has been existing in the
literature for a long time; see, e.g., Neyman (1979), Cox and Reid (1987), Lancaster (2002), Belloni,
Chernozhukov and Hansen (2014), Belloni, Chernozhukov, Ferndndez-Val and Hansen (2017). How-
ever, the factor model literature rarely realizes the asymptotic diagonality structure in the Hessian
and focuses almost entirely on the eigen-decomposition approach as pioneered by Bai (2003) with an
exception by Wang (2022) who considers quasi-maximum likelihood estimation of nonlinear factor
models. Almost all asymptotic analyses are explicitly or implicitly based on Bai’s (2003) decompo-
sition of the estimation error.! Unfortunately, Bai’s (2003) decomposition is no longer applicable for
factor models under more general setup, which includes the linear factor model with missing values
studied here and nonlinear factor models with or without missing values. We show that the special
structures in the Hessian and the third order derivative tensor enable us to go beyond the framework

of Bai (2003) and derive a novel decomposition expression.

1.2 Related literature and contributions of this paper

First, this paper is closely related to the burgeoning matrix completion literature. Earlier works in this

literature mainly focus on average (esp. Frobenius norm) convergence rate of the recovered missing

'See equation (A.1) in the Appendix A of Bai (2003).



values under homogenous or limited heterogenous random missing;?> see Candes and Plan (2010),
Koltchinskii, Lounici and Tsybakov (2011), Negahban and Wainwright (2011, 2012), Koltchinskii
(2011), and Rohde and Tsybakov (2011), among others. Motivated by empirical applications in
recommendation systems, causal inference and many social science studies, recent developments
mainly focus on the derivation of the accurate convergence rates or asymptotic distributions for the
estimators of elements or eigenvectors of certain low rank matrix in the context of heterogenous
random missing or nonrandom missing. See Schnabel, Swaminathan, Singh, Chandak and Joachims
(2016), Ma and Chen (2019), Sportisse, Boyer and Josse (2020), Athey et al. (2021), Bhattacharya
and Chatterjee (2022), Zhu, Wang and Samworth (2022), Agarwal, Dahleh, Shah and Shen (2023)
for heterogenous/nonrandom missing; see Chen, Fan, Ma and Yan (2019), Xia and Yuan (2021)
and Chernozhukov et al. (2023) for asymptotic distribution results. Due to the convex nature of
the nuclear norm, the nuclear norm regularization (NNR) approach has become one of the most
popular approaches in the literature (Mazumder, Hastie and Tibshirani (2010)). However, due to
the shrinkage bias caused by the nuclear norm regularization and the lack of explicit analytical
expression for the estimator, post NNR inference is a difficult open question. Chen et al. (2019)
and Xia and Yuan (2021) tackle this issue under the assumption of homogenous missing across both
cross sectional and time dimensions, while Chernozhukov et al. (2023) allow heterogenous missing
across either cross section dimension or time dimension, but not both. For more general missing
patterns, e.g., where missing is heterogenous across both cross section and time dimensions or we
have staggered missing, post regularization inference remains unknown.

In this paper, we provide a solution for post regularization inference under very general missing
patterns, including heterogenous missing over both cross section and time dimensions, selection on
covariates/factors/loadings, block/staggered missing, mixed frequency and ragged edge. In fact, we
provide a unified framework for deriving the convergence rate and the limit distribution. In principle,
other missing patterns may be also allowed as long as one can verify the restricted strong convexity
condition and prove that the smallest eigenvalue of certain normalized Hessian matrix is bounded
away from zero with probability approaching 1 (w.p.a.1).

Second, the paper is closely related to the flourishing causal inference literature. The causal infer-
ence literature mainly considers block missing or staggered missing (staggered treatment adoption),
where some units are treated from possibly different initial dates to the end of the sample period.

Under the potential outcome framework (e.g., Rubin (1974)), the untreated potential outcomes of

?Heterogenous missing means that the missing probabilities could vary across cross sectional units or/and time.



the treated observations are considered as missing and the objective is to impute the missing values
using the control observations. The advantage of factor models is that the untreated potential out-
comes of different units are allowed to follow unparallel trends and the treatment effects are allowed
to be heterogenous over both cross section and time dimensions. See, e.g., Gobillon and Magnac
(2016), Xu (2017), Chan and Kwok (2022) and Liu, Wang and Xu (2024). Important theoretical
progresses have been made recently by Athey et al. (2021), Bai and Ng (2021) and Xiong and Pelger
(2023). Athey et al. (2021) consider nuclear norm penalized least squares estimation and prove
the average consistency of the imputed values. Bai and Ng (2021) propose a two-step estimation
procedure for the block missing cases and provide an elegant inferential theory. Xiong and Pelger
(2023) propose to apply PCA on the adjusted sample covariance matrix where each entry is adjusted
by the inverse observation proportion. While these progresses are useful, the asymptotic properties
of the fundamental least squares estimator based on the observed data remain unclear.

This paper provides the inference theory for the least squares estimator of factor models with
missing values. Compared with Athey et al. (2021) who only establish an average convergence rate
for the NNR estimator, we provide a complete set of inference theories. Compared with Bai and
Ng (2021) who focus on block missing, our method applies to much more general missing patterns
and may improve the efficiency if there are data outside of their “tall-wide” block. For example,
we allow the treatment timing to be correlated with the factors and loadings in a block/staggered
treatment design. Our method is also more general and more efficient than Xiong and Pelger (2023).
In Xiong and Pelger (2023), the missing probabilities are allowed to be correlated with the factors or
loadings but not both and the covariance matrix of the factor is required to be time-invariant. We
show that the least squares estimation does not require such conditions. In addition, if we use Xiong
and Pelger’s (2023) estimator as the initial value for the EM algorithm and iterate until convergence,
we can improve the efficiency by eliminating the additional variance term resulting from reweighting
the entries of the sample covariance matrix.?

Third, the paper is closely related to the unbalanced panel literature because of the ragged edge
problem,* the mixed frequency issue and random missing. Various algorithms have been proposed to
handle these missing patterns; see, e.g., Stock and Watson (2002), Mariano and Murasawa (2003),
Giannone, Reichlin and Small (2008), Aruoba, Diebold and Scotti (2009), Doz, Giannone and Re-
ichlin (2011), Jungbacker, Koopman and van der Wel (2011), and Banbura and Modugno (2014).

3Xiong and Pelger (2023) point out in its simulation section that EM iterations could further improve the efficiency
but there is no inferential theory for the iterative estimator under general missing patterns.

1n real-time data analyses, the ragged edge problem may mean that there is mising data at the end of the sample
period or it arises because different series are released at different time.



Typically, these algorithms estimate the model parameters (mainly the loadings) by either PCA
using only the balanced part of the panel or maximum likelihood estimation (MLE) using the EM
algorithm, and then estimate the factors by Kalman smoother using the estimated parameters and
the whole unbalanced panel. The PCA estimator using only the truncated balanced panel is easy to
implement and well studied by Doz et al. (2011), but truncation may lead to serious efficiency loss
or selection bias, especially when dealing with asset pricing panels and other high dimensional data;
see Bryzgalova, Lerner, Lettau and Pelger (2022), Chen and McCoy (2022) and Freyberger, Hopp-
ner, Neuhierl and Weber (2022) for detailed discussions. The likelihood-based estimators (Stock and
Watson (2002), Mariano and Murasawa (2003), Banbura and Modugno (2014)) do not suffer from the
truncation issue, but their asymptotic properties and the corresponding missing pattern conditions
are unknown.

This paper contributes to this literature by establishing the asymptotic theory of the least squares
estimation without truncating the unbalanced panel into a balanced one or aggregating the high
frequency series into low frequency series. Since least squares estimation is not equivalent to PCA
estimation for mixed frequency factor models, how to analyze the least squares estimator of mixed
frequency factor models is a well-recognized yet unsolved problem. This paper solves this problem.
It is also worth noting that our results allow the missing probabilities to be correlated with the latent
factors and loadings, which is particularly important for survey data and asset pricing panels, as
discussed in Bryzgalova et al. (2022). In addition, our results also illuminate the (large N large T)
asymptotic analysis of the MLE approaches in Mariano and Murasawa (2003), Banbura and Modugno
(2014) and other related papers.” These approaches are quite popular in the nowcasting literature

for handling mixed frequency data.

1.3 Roadmap

The rest of the paper is structured as follows. Section 2 introduces the notations, missing patterns and
the estimation strategy. Section 3 discusses the roadmap for the asymptotic analyses by outlining the
key steps and intuitions. Section 4 presents the assumptions and the asymptotic properties. Section
5 consider two potential applications of the theoretical results in the paper. Section 6 presents some

simulation results. Section 7 presents an application to the UK grant allocation data to test the

Mariano and Murasawa (2003) and Banbura and Modugno (2014) maximize essentially the same likelihood function
using different algorithms. The former uses Kalman filter to evaluate the likehood and quasi-Newton method to
maximize the likelihood, while the latter uses the EM algorithm. Note that these two papers treat the factors as
missing data when calculating the likelihood, while the EM algorithm in Stock and Watson (2002) treats both the
factors and the loadings as parameters.



average treatment effects of partisan alignment. Section 8 concludes. All proofs are relegated to the
online appendix.

Notation. For a matrix A, we use |4, [|A] 7, [|A], and ||A]|,, to denote its spectral norm,
Euclidean norm, nuclear norm, and elementwise max form, respectively. omin(A) denotes the smallest
cigenvalue of A. “o” denotes the Hadamard product of two vectors or matrices. - and <, denote
convergence in probability and distribution, respectively. We use (N,T') — oo to denote that N
and T pass to infinity jointly. For a positive integer a, let [a] = {1,2,...,a}, where = signifies a
definitional relationship. Let I, denote an a X a identity matrix. Let ¢; V ca = max (c1,¢2) and
c1 A cg = min(cy,c2). Let ey = VN AT. Let M denote a generic large positive constant whose

value may vary over places.

2 Missing Patterns and Estimation

Consider the following factor model with missing values:

yir = di(f'A) +vie) for i € [N] and t € [T], (2.1)

diy = 1{y is observable},

where 1{-} denotes the usual indicator function, f is the r-dimensional factor at time ¢ and ) is
the r-dimensional loading for unit ¢, r is the number of factors, and v is the error term. In (2.1),
we use 0 to denote y;; when it is not observable. Our objective is to estimate the factors and the

loadings using the observed data, and establish the asymptotic theory for the proposed estimator.

2.1 Missing Patterns

Let ¢ = (\Y, f%), where \° = (AY,.., %), and O = (f, ..., f¥). Let By(-) = B(:|¢"). The
missing data patterns allowed in this paper are listed below. These patterns can be divided into two
types depending on whether Ey(d;;) = 0 is allowed or not for some (i,t). The first type assumes
Eg4(dit) > ¢ > 0 for all ¢ and ¢, while the second type allows Ey(d;;) = 0 for some ¢ and ¢t. For all of
these patterns, d;; is assumed to be independent with v;s for all j and s, which corresponds to the

unconfoundedness condition in Rosenbaum and Rubin (1983).

Example 1 (Completely random heterogenous missing): d;; is independent across i and t
and independent of f?, )\2 and vjs for all (j,s). The missing probability, 1 — E(d;), is allowed to

vary across both © and t, and min,; B(d;y) > ¢ > 0.



Note that here E(d;) can also be written as [Eg4(d;) because of independence between d;; and
#°. In Rubin’s (1976) terminology, this case is called missing completely at random (MCAR). The
next example considers selection on observable covariates and /or factors and loadings, which is called

missing not at random (MNAR).

Example 2 (Selection on covariates or factors and loadings): di; — Ey(di) is independent
across i and t, and independent with vjs for all j and s. Ey(di) is independent with {vjs} but could
be correlated with )\9 and fO for some j and s. The conditional missing probability, 1 — Eg(dit), is

allowed to vary across i and t, and Ey(dy) > ¢ > 0.

The key difference with Example 1 is that here we allow E4(d;;) to be correlated with the factors
and loadings. This is particularly important as in recommendation system and many causal social
science studies the missingness arises from treatment assignments or individual choices, and conse-
quently the missing probability is correlated with certain elements of the matrix itself. For example,
in the matrix consisting of movie ratings, the probability that a person submits his rating for a movie
is positively correlated with how much she likes that movie. In survey data, high income respondents
are less likely to answer questions that has tax consequences. In asset pricing panels consisting of
characteristics of different firms, the missing probabilities of firm characteristics tend to be larger for
small-cap firms, for extreme values of the characteristics and for certain time periods with common
macroeconomic shock.

More formally, we can model the selection/assignment equation as
dfy = 20 + ¢V + uy, df is latent and dyy = 1{d}, > 0}, (2.2)

where z;; denotes some observable exogenous/predetermined variables (e.g., zit = d;¢—1), g? and oz?
denote some latent factors and loadings, and wu;; denotes the error term. Thus each unit is allowed
to switch between the treated status and the untreated status. Our asymptotic results imply that
the least squares estimators of f2 and A\? has no selection bias even if f and A} are correlated with
Zit g? and a?, as long as v is uncorrelated with zg, g? , oz? and wu; (strong ignorability). However,
if there are missing covariates or factors in both y;; and d};, then vy is correlated with Eg(ds) and
there is a selection bias.

To handle heterogenous Ey(d;;), so far the literature only considers the case where Ey(di) is

heterogenous across ¢ or ¢ but not both (see, e.g., Chernozhukov et al. (2023), Zhu et al. (2022)), or

assumes that Eg(d;) itself has an approximately low rank structure or depends only on observable



exogenous covariates (see, e.g., Schnabel et al. (2016), Ma and Chen (2019), Bhattacharya and
Chatterjee (2022), Sportisse et al. (2020)). Xiong and Pelger (2023) allow Ey(d;¢) to be heterogenous
across both i and ¢, but do not allow Ey(d;;) to be correlated with f; E(ff f2') is not allowed to be

different across t either. Example 2 includes all these patterns as special cases.

Example 3 (Block missing): di; = 0 for i > N, and t > T,, where N, and T, denote the
cardinality of {i € [N] : dixt = 1 for allt} and {t € [T] : dyx = 1 for all i}, respectively. No/N and

T,/T are bounded away from zero as (N,T) — oc.

Example 4 (Staggered treatment): di; =1 for alli < N, and t € [T] and diy = 1 for i > N, and
t < Ty; there are no restrictions on di for i > N, and t > Ty;. T, = min; Ty;, and N,/N and T,/T
are bounded away from zero as (N,T) — oo. In particular, the starting treatment time for individual

i > N, can be written as T,; + 1.

Example 5 (Mized frequency): di; = 0 if i > N, and t/h is not an integer, where N, is the
number of high frequency series, h is the frequency ratio. Note that after reorganizing the data across
t, this case is just block missing when there are two different frequencies and staggered missing when

there are more than two frequencies.

These three examples allow dj;; to be strongly correlated across ¢ and t, the key difference from
Example 2 is that here we allow Eg(d;;) = 0 for some ¢ and ¢. Note that here we focus on the strong
signal case with N,/N > ¢ and T,/T > ¢ for some small ¢ > 0. Conceptually it is not difficult to
extend our results to allow N,/N and 7,/T to tend to zero at certain speed. But for notational
simplicity we do not pursue this direction.

Examples 3—4 are relevant for program evaluation. For block missing, the units with ¢ < N,
would never get treated while the units with ¢ > N, get treated simultaneously at time 7, + 1. For
staggered treatment, the units with ¢ < N, would never get treated, while the units with ¢ > N,
get treated from T,; + 1 to the end of the sample and T, = min;{7,;}. For each i, the treatment
timing T,; is allowed to be correlated with the factors and loadings, which is relevant for the event
study literature. Our asymptotic results only require that there exist N, and T, such that d;; = 1
for : < N, or t < T,. Example 5 is relevant for the nowcasting literature. To estimate factor model
from mixed frequency data, so far the literature uses either maximum likelihood (e.g., Mariano and
Murasawa (2003), Banbura and Modugno (2014)), which is lack of asymptotic theory, or the PCA on
the high frequency data, which is not efficient. Our results show that direct least squares estimation

on the mixed frequency data is asymptotically normal and efficient.



Example 6 (Raggered edge/No missing): diy =1 fori € [N] andt € [T — 1] (or [T]).

For raggered edge data, the missing observations may only arise at the end of the sample period,
and typically principal component estimation is applied on the complete data excluding the data in
the last period. Thus we put this case together with the no missing case. Our asymptotic theory
also applies here, thus includes the results of Bai (2003) as a special case.

Other missing patterns could be allowed for as long as we can prove average consistency for the
estimated factors and loadings (mainly verify the restricted strong convexity condition) and prove

that the smallest eigenvalue of the normalized Hessian is bounded away from zero in probability.

2.2 Estimation

Let A = (A}, .., AN, f = (fls 0 /5, A = (M\,...,\n), and F = (f1,..., fr). We propose to

maximize the following penalized partial likelihood function:

QN f) =LA )+ P(A, f), (2.3)

where
LD = 53 S daly— fiA)? and (24)
POLf) = _cng Hdg(A]:[A B F:'FF) i_ c]\sz Hndg(A]’VA) i_ cZ\2fT Hndg(Fj:F) i (25)

Below we explain the terms defined in (2.4) and (2.5) in order.

Here, L(A, f) is the partial quasi Gaussian likelihood of the outcome equation, ignoring the
constant term and the likelihood function of dj; from the selection equation. Given ¢, the probability
of diy = 1, viz., Eg(d;t), may contain additional information about (2, \Y), e.g., By(dit) = (YY),
where ®(-) denotes the CDF of the standard normal or logistic distribution function. However,
utilizing such information requires us to assume a fully parametric model for d;;; see, e.g., equation
(2.2) and the link function ®(-). We shall just focus on L(\, f), which avoids any parametric
assumption on Ey(d;). In this case, maximizing the quasi Gaussian likelihood function is equivalent
to minimizing the least squares objective function.

P(), f) denotes a penalty function that accounts necessary restrictions on (A, f) for the purpose of

identification. dg(&2 —£E) denotes a diagonal matrix with the same diagonal elements as AA_EF
I\™N T g N T

ndg(LNA) denotes an upper-triangular matrix with the same elements as % in the upper-triangular

block, and ndg(#) is defined in the same way. c is an arbitrary positive constant. Thus adding the



penalty P(A, f) is equivalent to imposing the following set of identification restrictions:

1 N 1 T
~ Zi:l )\i)\; = T thl ftft' and both are diagonal. (2.6)

Obviously, (2.6) imposes r? restrictions for identification. As a matter of fact, for any (F, A) and any
r x r invertible matrix G, L(FG,AG'~') = L(F,A), and there is a unique G such that (FG,AG'™!)
satisfies the 72 restrictions in (2.6). Without loss of generality, we assume that after certain normal-

izations or redefinitions, the true value (A?, F°) also satisfies this restriction, i.e.,
LV oo - LT 0,0 .
~ Zi:l A A = T thl fr fi and both are diagonal. (2.7)

If (AY, F%) does not satisfy this restriction, there always exists an r x 7 normalization matrix G° such
that (FOG?, A%(G")~1) satisfies this restriction, and we can redefine (F°G?, A°(GY)™1) as the true
value.

To account for as many missing patterns as possible, we restrict our attention to the case where the
factors and loadings are uniformly bounded. The partial maximum likelihood estimator is obtained
as follows:

(5‘a f) = ar max Q(Av f)a

g
Moo SM, [ fll oo <M

where A = (5\/1, ey 5\/]\,)’ and f = (fi,...., fr). Let A = (A1, ..., Ax)" and F' = (fi, ..., fr)’. In the above
maximization, we impose the conditions that ||A|| ., < M and || f]| ., < M to help verify the restricted
strong convezity (RSC) condition used in the proof of Theorem 4.1 of Section 4.2. It is also imposed
in Negahban and Wainwright (2012), Chernozhukov et al. (2023), and many other papers in the
matrix completion literature. But for the block missing cases, this condition is not needed as there

are other ways to obtain initial consistent estimates of the factors and loadings.

Algorithm 2.1 Partial Maximum Likelithood Estimation

1. Obtain initial consistent estimates of the factors and loadings, f and \.0

(1) For the random missing cases (Examples 1-2), we use the nuclear norm regularized estima-
tion. A popular algorithm for calculating the nuclear norm reqularized estimator is the iterative

singular value thresholding (ISVT) algorithm in Mazumder et al. (2010).

(2) For examples 3-5, we can either use the nuclear norm reqularized estimation, or apply PCA

The estimators f and A are consistent on average (in terms of Frobenius norm) if % Hf— fOH = 0p(1) and
F

], = a0

10



estimation on the two complete data blocks (1 < i < N1 <t <T) and (No+1<i<N,1<
t < T,) separately as in Bai and Ng (2021). We can also use Xiong and Pelger’s (2023) inverse

observation-proportion weighted estimator.

2. Use the estimator in Step 1 as the initial value for the EM algorithm of Stock and Watson (2002)
and iterate until convergence. That is, we use the estimated factors and loadings in the last
iteration to impute the missing values and then update the estimated factors and loadings by the

principal components of this imputed complete matriz, repeat this procedure until convergence.

3 Roadmap and Discussion

In this section, we consider the roadmap that paves the way for formal derivation of the asymptotic

properties of the partial maximum likelihood estimators X and f .

3.1 The Case of Random Missing

We focus on the case of random missing in Examples 1-2. It is well known that nuclear norm penalized
least squares estimation is consistent on average (in terms of Frobenius norm) and computationally
advantageous. On the other hand, the nuclear norm penalty also brings in shrinkage bias and makes
it infeasible to derive explicit asymptotic expansion of the estimation error, which is crucial for
proving the limit distributions of the estimators. Therefore, the crucial issue is how to eliminate the
regularization bias and derive the asymptotic distributions.

As discussed in the introduction and in Example 2, existing methods typically rely on restrictive
assumptions on Eg(d;;) in order to ensure a delicately designed second step to eliminate the bias. Our
solution is simple: just go back to the unpenalized least squares estimator but take into account the
identification restrictions. In the following, we outline the key steps in the derivation of the accurate

convergence rates and limit distributions for the estimated factors and loadings.

3.1.1 The Convergence Rates

Let ¢ = (X, /), ¢° = (\Y, foY, and ¢ = (5\/, f"Y. Define the score and Hessian functions of Q(¢) :

Sp(¢) = 05Q(¢) and Hyy(¢) = Oy Q(9)-

When Sy(¢) and Hyy(¢) are evaluated at ¢°, we simply write them as S, and H, #¢'» Tespectively.

The first order conditions (FOCs) of maximizing Q(¢) are given by Sy(¢) = 0.

11



First, we will show that <}b is consistent on average so that we can conduct the first order Taylor

expansion of the above FOCs around ¢° to obtain 0 = Sy + H, ¢¢/($ — (bo) + Ry, or equivalently,
g 0 -1 -1

where Ry, denotes the (Nr+1'r) x 1 vector of remainder terms: Ry, = (R), R})’, R\ = (R}, ..., R} )',

and Ry = (R’fl, v R’fT)’ . The above equivalence holds provided the inverse of Hyy is well defined

asymptotically after suitable normalizations. Let

NxIn, 0 TxIn, 0O
Dnp = * AN and Dpy = X AN .
0 TXIT,,« 0 NXITT

Then the normalized version of equation (3.1) is given by

\/LN(X - AO) 0
1 - (¢ ¢) = DNTH¢¢’S¢ DNT ¢¢,R¢
T

_1
_ (-DoiH,, Do) PrvSe (—D’%H D2y 3.2
= ( TN pg TN) JNT + TN 1 p¢’ TN) JNT (3.2)

Second, noting that Sy = (SAI, .. Si\N, S}l, s S}T)’ with Sy, = Zthl dizvis f and Sy, = Zf\il ditvit)\?,

it is easy to see that
1
D, %S 1
ZINZ | — O, (—). 3.3
NT b ) (3.3)
Third, we show in Lemmas B.1-B.2 in the Appendix that under standard regularity conditions,
as (N,T) —

H(—D;J%HMID;%)* — 0,(1). (3.4)

While this result appears simple, the proof is quite complicated because of the large dimension of the
Hessian matrix Hyy as an (N7 + Tr) x (N7 +T7) matrix. Our proof utilizes the special structure
of H,y, which comes from the factor model itself. It is also crucial to normalize H,y by D;]%, since
the eigenvalues of H,, have different asymptotic orders when N and T' pass to infinity at different
speeds. For details, see the proofs of Lemmas B.1-B.2.

Fourth, for the remainder term Ry = (R}, R’f)’ , we show in Lemma B.3 in the Appendix that

IR = |2

T -]+ e[y - o + 5 3] 9
it = [ 2 oue ] 25— s o -
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2] = o= 2 F h =2+ R Il o
5] = oulla—el -l F - T -l 5

In fact, the above results hold for arbitrary missing patterns discussed above. Our proof utilizes the
fact that the third order derivatives of @Q (A, f) are sparse; e.g., Ox, 7. Q(A, f) = 0 for all i # j and
O\ 1.1, Q(A, f) = 0 for all s # t. See the proof of Lemma B.3 for details.

Combining equations (3.2)-(3.8) yields that

L(j\_)\O) )
( i;(f—fo) ) :Op(c; Hf fOH TN HA—AOH )- (3.9)

where the order on the right hand side on (3.9) holds elementwise for the left hand side object. This

expression allows us to refine the convergence rates. We shall show \/— H)\ )\OH = Op( \/clN_T) and
\/_ H f- fOH — \/W) in Theorem 4.1 below. Then plugging these initial rates back into equation
(3.9), we immediately obtain that \/— H)\ )\OH = E) and % Hf - fOH = Op(ﬁ), which are

the same as the rates in Bai (2003) for the complete data case.

3.1.2 The Limit Distributions

To derive the limit distribution of A; — Y, from equation (3.1) we have
Ai = A =10~ 0% = —[H_ }Sgli — [H, Ryl

where [-]; denotes the i-th block of the vector inside the square brackets, each of length r. Utilizing

the asymptotically block-diagonal structure of Hg,, we can show that

H LS5 = (L) ™ S, + Opl =), (3.10)

4
~

1

[y Rli = ()HRAHJrO( VN

) [ Rl + Op( (3.11)

}) 20

where L,y is a block diagonal matrix, [Lyy]i = St ditfOfY is the (i,7)-th block of the square
matrix Ly,s, each of size r x r, and Sy, = Zle dipvi fP. For detailed proof of these two expressions,
see the proof of Theorem 4.3 in Section 4.2. Given the expressions of || Ryl HR,\H and ||Ry|| in
equations (3.5)—(3.8) and the fact that Hj\ - )\OH = Op( VN ) and Hf fOH =

CNT

T), it is easy to

13



see

. T T TVN NVT
1Bl = ‘ Ai = AN || Op(—=) + Op(=5—), [IRxl| = Op(—5—). and [|R¢[| = Op(——).
CNT CNT CNT CNT
Thus we have [H;;,Rgs]i = ’ Ai — A Op(ﬁ) + Op(ﬁ) and it follows that
\ 0 -1 1 3 0 1
A= X0 = = (L) ™ S+ Op(==) ||Ai = X0 + Onl ).
CNT CNT

Under some regularity conditions, ([%L A\ )\r]i)fl %S \; is asymptotically normal, thus v/T (i — D) is
also asymptotically normal if CQﬂ — 0. The limit distribution of v/N( fi — 1) follows from similar
NT

arguments.

3.1.3 Summary

In summary, we first derive preliminary consistent but inaccurate initial convergences rates: H A— )0 H =

Op(\/@) and Hf— fOH = Op(j@). Then we use equation (3.9) to refine the rates to obtain

CNT CNT

[ =] = 00 an |- 1

CNT

|Rx|| and || Ry|| in equations (3.5)-(3.8) imply that [H;(;‘,RAZ = Op(ﬁ) )

= Op(gg). These rates together with the expressions of || Ry, ||,
Ai — N0|| 4+ Op(=—), which
T

1
2
N

is asymptotically negligible compared with the leading term — ([L )\/]i)fl Sy, Note that these results
are also valid for the complete data case (see Example 6).

Equation (3.1) plays a similar role as the eigen-decomposition expression (equation A.1) in the
Appendix A of Bai (2003). So far almost all asymptotic analyses of factor model are essentially based
on/similar to Bai’s (2003) eigen-decomposition, but it is applicable only for linear factor models with
complete data. Equation (3.1) together with the structure of H,, provides an alternative and more
general way to decompose the estimation error A— X% and f — f9. We believe that based on equation
(3.1), we can generalize the existing results of factor models to many other setups such as nonlinear

factor models or linear/nonlinear panel data models with missing values.

3.2 The Case of Block/Staggered Missing

For the block/staggered missing case (Examples 3-5), the roadmap is essentially the same as the
_1 _1
random missing case. The major difficulty is how to show (—D;2 Hyy Dp2) ™! = Oy(1) because the
structure of H, under block/ staggere(li missing 1and under random missing are quite different.
A key condition for proving (—D;]%HM/D;]%)_l = Opy(1) in the random missing cases is that

Eg4(dit) > 0 for all ¢ and ¢. Nevertheless, this condition is violated in the block/staggered missing

14



case where Ey(dyy) = 0 for some (i,) when ¢ > N, and ¢ > T,. Because of this fundamental
_1 1

difference, we prove (— D3 H yyr Do 2)7! = 0,(1) separately in Lemma B.2 of the Appendix utilizing

a totally different strategy. In fact, after some effort we successfully calculate all the eigenvalues and

_1 _1
eigenvectors of D5 H, Drpy; for the block/staggered missing case!

4 Assumptions and Asymptotic Theories

In this section we first provide some assumptions and then formally study the asymptotic properties
of the partial maximum likelihood estimators (PMLESs) A and f. Recall that M denote some generic

large positive constant whose value may vary over places.

4.1 Assumptions

Assumption 1 (i) £ F”FY L Sp >0, and maxj<i<r | /2] < M.

(ZZ) %AO,AO 2 Ya >0 and maxi<;<nN H/\?H <M.

Assumption 1(i)—(ii) corresponds to Assumptions A-B in Bai (2003). As in Bai (2003) we focus
on the case of strong factors. Unlike Bai (2003) who only assumes uniformly bounded loadings,
we require that both the factors and loadings are uniformly bounded. In the matrix completion
literature, the uniform boundedness of both H 1P H and H)\?H is sometimes referred to the incoherence
condition; see. e.g., Candes and Recht (2009), Candes and Plan (2010), Keshavan, Montanari and Oh
(2010), Negahban and Wainwright (2012), Chen et al. (2019), and Chernozhukov et al. (2023). This
condition requires that the entries of the singular vectors of the latent signal matrix FOAY should be
approximately evenly distributed. Technically, the incoherent condition is crucial for verifying the
restricted strong convexity (RSC) condition, which is a key step for proving the average consistency
(in terms of Frobenius norm) of the imputed matrix using nuclear norm penalization. See, e.g.,
Negahban and Wainwright (2011, 2012) and Chernozhukov et al. (2023). In addition, the minimax
result in Chernozhukov et al. (2023) argues that the incoherence condition is necessary. For the

random missing cases (Examples 1-2), our proof for the initial convergence rates of Hj\ — )\0’ and

f — f0 H also requires verifying the RSC directly. This is why we also need the incoherence condition.
Let sz't = dit — E¢(dit) and YNd (t, S) = % Z’f\il \Ed,(dztcﬂs)] Let maxiy = mMaxj<¢<T and max; =

maxi<j<n . Define min; and min; similarly.

Assumption 2 (i) For random missing (Examples 1-2), given ¢°, dit is independent across i, and

independent with {vjs}; By(di) is independent with vjs and may vary across both i and t, and
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ming By (di) > ¢ > 0; 7351 3y Ywva (t8) < M: B(§ 33 Hﬁ > ioaldic = Bo(da)l 21| ) =

1 1
O(1) for some Kk > 4 such that ]\\;% — 0 and \T/% — 0.
(ii) For block/staggered missing (Examples 3-4), diy = 1 for i < N, ort < T, and no restrictions

on dy fori > N, andt > T,, where N, and T, is defined in Example 3. For mized frequency (Example
5), dit =0 if i > N, and t/h is not an integer, where N, is the number of high frequency series, h
is the frequency ratio. In addition, as (N,T) — oo, both N,/N and T,/T are bounded away from
zero, both omin(F ZtTi1 f21Y) and omin(3 vazol MY are positive and bounded away from zero in

probability.

Assumption 2 summarizes the conditions on missing patterns discussed in Section 2.1. Note that
our asymptotic results only require Assumption 2(i) or 2(ii), but not both. For random missing,
Assumption 2(i) implies that [Ey(d;;) is allowed to vary across both i and ¢ and be correlated with )\2
and f for some (4, s). The condition on vy, (¢, s) ensures weak dependence of {Jlt} along the time
dimension, which is comparable with Assumption 4(ii) below by noticing that max; yy4 (¢,t) < 1..
As far as we know, Assumption 2 includes almost all the missing patterns considered in existing

literature except for the case where the error term vj, is correlated with the missing mechanism.
Assumption 3 The eigenvalues of the r X r matriz XpXp are different.

Assumption 3 is a standard identification condition and is the same as Assumption G in Bai

(2003). It allows us to identify the factors and loadings from the common components.

Assumption 4 Let yx(s,t) = % Zf\il E(d;isvisdivit) .-
(i) B(|divie| ) < M.
(i) maxs vy (s,s) < M and %Zgzl Zle |va(s,t)] < M.
(iii) For every (t,s), E{ﬁ Zﬁl[disvisditvit — B(d;svisdivi)]}2 < M.

Assumption 4 generalizes Assumption C in Bai (2003) to the missing data setting. When there
is no missing data, di; = 1 for all ¢ and ¢, and these assumptions reduce to Bai’s (2003) Assumption

C with some slight modifications.

Assumption 5 E(x S0, |77 Soiny divaefI9) < M and B3 30 ok ik duva|l) < M
for some ( > 2.

Assumption 5 generalizes Assumption D in Bai (2003) to the missing data setting. If { = 2 and
d;y = 1 for all 7 and t, the first part of the above assumption reduces to Assumption D in Bai (2003).
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(]

E(Atl\), and Az‘F = E(AIF) Let §1its = ftoditvitdisvis, £2ijt = )\?ditvitdjtvjt, and fit = ditvitfto)\?/.

To introduce the next assumption, let Az = % Zf\; 1 d NN Aip = % rf:l dit fto fto’ , Ay =

Assumption 6 (i) 27 [|An — A||? = Op(L), £ N, | Air — Air||” = Op(4), ming omin (As)
> ¢ >0, and min; oy (A;p) > ¢ > 0.

(it) max, ﬁ S A s — E(Az}lfuts)]Hz < M, max, 4 S0 S [BIAF €xars) |
< M, max, B S, || 2 T 6~ BEai))| ) < M and max, & £, |51 Bleye,)
’ﬁ Sy S (A o — B(A L i) H2 < M, maxj 4 300 Y [B(AR Eae)]| <
M, max; BE(+ S ‘\/_lﬁ Zi\;lKQijt - E(f2ijt)]H2) < M and max; i ‘foil E(fzijt)H2 <M.

(i) Bll A= S, S, A éal P < M and Bl A= S, S0 AQl€qll? < M;

max [ H \/% Zf\; Zthl Aﬁ«}fitdis i < M and max,; B( Zf\; Hﬁ ZtT:1 irdis

max; B || A= SN ST Ak, d; 2<Mcmdma EBASL =N €ad; 2)<J\4
JE N YNT 2ei=1 2at=1 “4A Sitdjt || = Xj BT 2u=1 || /N 2ui=1Git%t|| ) = M-
(iv) For any i, %Zle di 1Y LS and ﬁZtT:l dizvir fP 4, N(0,Q;r) for some positive

2
< M;

max; &

2
) < M;

definite matrices X;p and ;.
(v) For any t, %Zf\il dyg O\ — A and \/—%Zi\; dizvig A 4, N(0,Q4p) for some positive

definite matrices Yip and p.

Assumption 6 generalizes Assumption F in Bai (2003) to the missing data setting. Like Assump-
tions 4-5, it allows the error v;; to be heteroscedastic and weakly correlated across ¢ and ¢. The matrix
completion literature typically assumes that v;; is independent across ¢ and ¢; see, e.g., Negahban and
Wainwright (2012), Chen et al. (2019), Xia and Yuan (2021), Zhu et al. (2022), Bhattacharya and
Chatterjee (2022) and Chernozhukov et al. (2023). In this sense, Assumptions 4-6 extend the matrix
completion literature from the setup of strict factor models to that of approximate factor models,
which is more suitable for asset pricing, economic forecasting and other non-experimental settings.
For example, the asset returns may reflect the risk premium of both strong factors as defined in As-
sumption 1 and weak factors where the latter enter the error terms generating weak cross-sectional

dependence.

4.2 Asymptotic Properties of the PMLESs

Now we are ready to formally present the asymptotic results.

Theorem 4.1 (Preliminary Consistency): Suppose that Assumptions 1-4 hold. Then as (N,T) —

oo e [[A= 4] = 0u(Az) and I - 19 = Out A
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Theorem 4.1 implies that the convergence rates of i — )\? and ft fY are O o( \/—) on average.
Although the rate O,( \/—) is not sharp, it is established allowing v;; to be weakly correlated across
i and t. More importantly, once we plug the above results back into equation (3.9), we can obtain

5\—)\0‘

\/_1N ‘ = Op(ﬁ) and ﬁ Hf — fOH = Op(cj\l,T) as stated in Theorem 4.2 below. The latter

rate is sharp and as accurate as the result of Bai (2003) for the complete data case.

Theorem 4.2 (Average Convergence Rate): Suppose that Assumptions 1-5 hold. Then as
(N.T) — oo, - H)\ - )\OH = Op(L) and & Hf_ fOH = 0,(-L).

CNT

Existing results in the matrix completion literature typically assume that v;; is independent across

log(N+T) )

T ; see, e.g., corollary

i and t, and the best rate proved (or implied) by these results is O,(
1 of Negahban and Wainwright (2012), Theorem 2 of Athey et al. (2021), and Theorem 1 of Zhu et
al. (2022). Our two-step proof strategy, viz., first establishing the initial rate in Theorem 4.1 and
then using equation (3.9) to refine the rate, allows us to establish the sharp rate in Theorem 4.2 even
when v;;’s are weakly dependent across ¢ and t.

Theorem 4.2 could be useful for characterizing the effect of using estimated factors or loadings as
regressors in subsequent vector autoregression or forecasting equations, and the rate O ( ) is crucial

to show that such effect is asymptotically negligible (e.g., Bai and Ng (2006)). In the current context,

as discussed in Section 3, the rate O ( —), combined with equations (3.5)-(3.8), allows us to show

P(CAI,T)"FO;D(%):

b’
and is asymptotically negligible ifyv'T /N — 0.

that [H R¢] (the higher order term in the expansion of A\;—\}) equals ‘

Remark 4.1 (Convergence of the EM algorithm in Section 2.2) Based on the structure of
H¢¢/(¢) presented in Appendix B 1t 1s not difficult to show that there exist m > 0 and C' > 0 such that

/\Hflin . Omin(— DTNH¢¢ ((b)DTN) > C w.p.a.1 as (N,T) — oo, where omin(-) denotes the smallest
PEN M (¢°)

eigenvalue and Ny, (¢°) = {¢ € RINFT)r HDNT((;S #°)|| < m}. This implies that in the region
Nin(@°), the criterion function Q(¢) is concave and there exists a unique local mazimum. By design,
the initial value in step (1), ¢ = (5\1, F1Y, lies in Nop(¢°) w.p.a.1, and it is well-known that the EM
algorithm converges to the local mazimum. Then the EM algorithm in step (2) would converge to the
local mazimum in Np,(¢°). In addition, Theorem 4.1 implies that the global mazimum ¢ = (5\/, 7Y
lies in Ny (¢°) w.p.a.1. Then the local mazimum in Ny, (¢°) is also the global mazimum and the EM

algorithm in step (2) converges to the global maximum (}5
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Theorem 4.3 (Limit Distributions): Suppose that Assumptions 1-6 hold. Then as (N,T) — oo,

VT(hi = A0) % N(0, 22 0rS ) if VTN — 0,
VN(fe = 1) S N0, 5 00T if VN/T — 0.

Theorem 4.3 allows us to construct confidence intervals for the factors and loadings. This is
useful since in various applications the factors represent economic indices and the loadings measure
the exposure of stock or bond returns to risk factors. Note that the limit distribution of 5\Z (resp.
ft) is the same as if one runs the least squares regression d;;y;: on d; f,? (resp. dit)\?), i.e., as if the
factors (resp. loadings) were observable. The effect of using estimated factors (resp. loadings) is
asymptotically negligible when vT /N — 0 (resp. VN /T — 0).

To make inferences on )\? and f, one needs to consistently estimate ¥;r, X, Qip, and Q. It
is easy to see that we can estimate X;r and X5 consistently by 2tp = % Z;f:l dit ft f{ and f)tA =
% le\il ditj\iS\;, respectively. ;r can be also estimated by using the standard heterokedasticity-and-
autocorrelation-consistent (HAC) formula with d;;v; f? replaced by dioy ft, where dj10; = di(yir —
5\; ft) For :a, the estimation depends on whether we allow for cross-sectional correlation among
{ditvit)\?} . In the special case where ditvit)\? are uncorrelated across ¢, we have

1 N
Qp = ]\}lm N Zizl E<ditvi>\?}\?l)7

—00

. A A < /\/ . .
and then we can estimate ;5 by Qp = % Zf\; 1 ditvft)\i)\i. When cross-sectional correlations are

present, we can follow Bai and Ng (2006) to estimate ;o consistently.

Remark 4.2 (Mixzed frequency) Theorems 4.2-4.3 establish the asymptotic properties for the least
squares estimator of large dimensional mized frequency factor models via minimizing Zf\il ZtT:1 dit (yir—
fI\)2. For the case of complete data, it is well-known that the PCA estimation is equivalent to the
least squares estimation and the relevant asymptotic theory is well-studied in Bai (2003). However,
the equivalence no longer applies for mixed frequency factor models, and consequently how to es-
tablish the asymptotic theory for the least squares estimation of mized frequency factor models is a
well-recognized yet unsolved problem. A popular method for mixed frequency time series is to aggregate
the high frequency time series into low frequency series (e.g., Andreou, Gagliardini, Ghysels, and Ru-
bin (2019)), but this is not efficient. Theorems 4.2—4.3 constitute the first theory that systematically

solves this important problem.
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Remark 4.3 (Generality and efficiency) Theorems 4.2—4.3 also show that the least squares es-
timator is more general, and it is either more efficient than or as efficient as the methods of Bai and
Ng (2021), Xiong and Pelger (2023), Jin et al. (2021) and Chernozhukov et al. (2023). Bai and Ng
(2021) provide an excellent practical solution for block missing (Examples 3-5), and their estimated
factors and loadings are good enough after just one iteration. Our results show that if we use their es-
timates as initial values and iterate until convergence, we actually obtain the least squares estimates,
and the least squares estimators are as asymptotically efficient as their estimators. Xiong and Pel-
ger’s (2023) method is quite general and applies to Examples 1-6 except that they only allow Ey(d;t)
to be correlated with f2 or A but not both, and they also require B(f2f) be stable over time. Their
estimator is less efficient than the least squares estimator due to the inverse observation-proportion
weighting, but we can obtain the least squares estimate by using their estimate as the initial value and
iterating until convergence. The EM algorithm has always been popular for dealing with missing data
for factor models since Stock and Watson (2002). Jin et al. (2021) establish the asymptotic theory
for the EM algorithm under homogenous random missing, which is more restrictive than Example 1.
Our results provide the asymptotic theory for the EM algorithm under Fxamples 1-6, i.e., the EM
algorithm is actually asymptotically valid for a very wide range of missing patterns. Chernozhukov
et al. (2023) propose a debiasing procedure and rigorous theory for post nuclear norm regularization
inference based on sample splitting. Their method allows Eg(diz) to vary across i or t but not both,

which is more restrictive than Fxample 1.

5 Applications: Average Treatment Effect Estimation and Factor-

Augmented Regression

The asymptotic expansion in (3.1) also allows us to characterize the effect of using estimated fac-
tors/loadings on the limit distributions of the estimated average treatment effects or the estimated
parameters of factor-augmented regressions. This section focuses on these two important applica-

tions.
5.1 Estimation of Average Treatment Effect
To proceed, we add the following assumption.

Assumption 7 Let a = (aq,...,an)" and b = (b,...,by)" denote some nonrandom or exogenous
weighting vectors such that ||a|| = Op(V'N) and ||b]| = Op(VT). Let it = divinfPa; and &5 =
ditvz‘tA?bt-
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2
< M for (= Ai}lfa,it and A;j\lgb,it;

: 1 N T

(i) B HW i1 2at—1 Gt
.. . d

(ii) for any i, \/ﬁ Zle by — N(0,Q;) for some Qp;
d

(iii) for any t, ﬁ Zfil a;vit — N(0,Qq) for some Q.

Assumption 7 is similar to Assumption 6(iii), and it also allows the error v;; to be heteroscedastic

and weakly correlated across ¢ and ¢t. Based on Assumption 7 and (3.1), we are able to prove the

following theorem under the missing patterns in Examples 1-6.

Theorem 5.1 (Weighted convergence): Under Assumptions 1-7, as (N,T) — oo,

LA A% =0 Loy o (L
(A A)a—Op(C?VT) and —(F F)b—Op(c%VT).

Now we apply Theorem 5.1 to analyze the average treatment effect. Let y;(1) and y;:(0) denote
the potential outcome of unit ¢ at time ¢ with and without treatment, respectively. The individual
treatment effect is

Tit = Yit(1) — yi£(0) for i > N, and t > T,

where N, is the number of units that never get treated, and unit ¢ > N, receives treatment from
period T,; +1 to the end of the sample period. We consider the case where the N units can be divided
into K groups and all units in group k get treated from period Ty +1. Let Ny = |[{i € [N] : Ty, = Ti }|
with |-| denoting the cardinality of a set. Then the average treatment effect for group k at time ¢ > T},
is
AT Ty = =2 > Tit,
Ny 1T =T},

and the average treatment effect over ¢ for unit i > N, is ATT; = T+Tm ZZ;TM_ 41 Tit-

Various methods have been proposed to estimate the treatment effects. As discussed in Athey et
al. (2021) and Bai and Ng (2021), both the synthetic control approach and the unconfoundedness
approach can be studied from a factor model perspective. Let z;; denote a vector of exogenous

covariates. Following the literature, we assume
Yit = Tar(1 — dae) + [N + 25,80 + ear, (5.1)

where ¢;; denotes the error term, f¥\? denotes the interactive fixed effects (IFEs), and 8 is a vector
of the slope coefficients of x;;. Note that here {(i,t) : di = 1} and {(i,t) : dix = 0} are considered as

the control group and treatment group, respectively. As a result, we have

it = ¥it(0) - H{dix = 1} + yir(1) - 1{dis = 0},
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where y;;(0) = fto')\? —i—x;tﬁo +eir and i (1) = 750(1 —dit) + yi(0). If 754 = 7 for all ¢ and ¢, then (5.1)
is exactly the panel data model with IFEs as studied by Bai (2009) and the least squares estimator
7 of 7 is asymptotically normal. Here we allow the individual treatment effect 74 to be heterogenous
across both ¢ and ¢, thus our model is more general than that in Bai (2009). Unlike Xiong and Pelger
(2023) who model 7;; using the IFEs structure, we do not impose any structure on 7 as in Lu, Miao
and Su (2023). To estimate the treatment effects, we use the observations in the control group to
impute the potential outcomes of the treated group if they were not treated. The procedure is stated

in Algorithm 5.1 below.

Algorithm 5.1 Partial Mazximum Likelihood Estimation

1. Obtain the estimator 3 of B° using the balanced part of the control group observations;

2. Obtain the estimators f = (f], ..., fr) and X\ = (5\;,,;\;)’ of = (fY, ..., %’), and X0 =
()\?’,...,)\%’)/ using the observations in the control group (yi — x;tﬁ with diy = 1) and the

algorithm in Section 2.2;

3. Calculate the individual treatment effect 7+ = (yst —zgtﬁ) — fIX; for (i,t) in the treatment group.

Note that 74 — 754 = —J:;t(ﬁ - 6% - (ft’j\z - to’)\?) +¢ei. Forall i > N, and t > T,;, T4 is

generally inconsistent with 7;; due to the appearance of €;. For this reason, one typically considers

the average treatment effect over i or . Let 7., = Tla f\; 1a;7it and T = leb Zthl by denote the
average treatment effect weighted by a = (aq,...,an)" and b = (by,...,by)’, respectively. Define 7,
and 7;. analogously with 7; replaced by 7.

For two scalars ¢; and c¢3, ¢; < co denotes that both ¢;/ce and ca/cy are bounded away from 0

and infinity. To study the asymptotic properties of 7.; and 7;., we add the following assumption.

Assumption 8 (i) d’a < N and V'b < T;
(ii) B~ 8° = Oplext);
(iii) max; ¢ B ||z * < M.

The following theorem reports the asymptotic distributions of 7.; — 7.+ and 7;. — 7;..

Proposition 5.1 Suppose that Assumption 8 holds. Suppose that {dit,ff,)\?,eit} satisfy Assump-
tions 1, 2(it), and 37 with vy replaced by €it. Then as (N,T) — oo,

VNG —74))oNr, iN(O,l) ifVN/T — 0, and
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VT (7. —73))ors, in/\/'((], 1) if VT/N — 0,

where

N 1 N
2 -1 -1 1 0
oy, = CoaZip a2y Con + %Qm + 2005, - Zw’:l a;B(disNeie ),
_ _ T .1 T
U%Ti = CII)FElF:VLQlFE,LF:VLCbF + %sz _._QCII)FEZ}%% Zt o1 bSE(ditftOEitEis)y
1 N 0 1 T 0
CaA = % i—1 ai>\i’ and CbF e % th:l btft .

The first two terms in J%\m (resp. O'%Ti) can be consistently estimated by replacing XY, f?

and g; by 5\1-, ft and éj;, respectively. For the last term in a?\,n, the key is to estimate V) =
1 N

0 . . .
T 2aij=1 a;BE(diAj€itej¢) consistently. To do so, one can assume certain weak cross-sectional de-

pendence condition in (dit, )\?,Eit). Alternatively, if one assumes that ;s are independent over i
conditional on ¢°, then

1

aa i,j=1

1

N
Vi = a;B(diNeqeji) = a 21:1 a;iB(diA)e},),

which can be estimated consistently by its sample analogue with )\? and d;e; replaced by 5\1 and
ditéit, respectively, where djéy = dit(yir — ft’j\z — :v;tB) To estimate Vj under general weak cross-
sectional dependence, we refer the readers directly to Bai and Ng (2006). Similarly, for the last term
in UzTn» the key is to estimate Vp = % 223:1 bsE(d;i fPeiteis) consistently, say by using the HAC
procedure. The procedure is standard and thus omitted here for brevity.

For ATTy;, we can simply take a; = 1 if T,; = T} and 0 if T,; # Ty. Proposition 5.1 allows us
to construct confidence intervals or perform hypothesis testing for the group-time average treatment
effects ATTy;. For example, in program evaluation studies, we want to know whether ATTy; is
heterogenous across groups, how ATTy; evolves over the length of exposure to the treatment ¢ — T,

and what is the average of ATTy; for all k and ¢t > T}.

5.2 Factor-Augmented Regressions

In this subsection, we consider the factor-augmented regression:
Yien = o f{ 4+ BOWi + eryn, (5.2)

where W; denotes the vector of exogenous variables and Y}, denotes the dependent variable at time

t+ h. Model (5.2) can be regarded as a predictive regression model when h > 1. As explained in Bai
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and Ng (2006), this is the diffusion index forecasting model when Y, is a scalar; and when h = 1 and
Yigr = (f211. W), o and 3% become the coefficient matrix and (5.2) becomes a factor-augmented
vector autoregression model. Since fO is unobservable, we can use f as a proxy for f°. Bai and Ng
(2006) show that when f is estimated by the principal component analysis (PCA) and there is no
missing data, using f for fO does not affect the limit distributions of the parameter estimates and
the conditional mean of Yr,, if VT /N — 0. Theorem 5.1 allows us to extend the results of Bai and
Ng (2006) to cases where f is estimated from panel data with missing observations.
Assumption 9 Let Z; = (fO, W})'. B(erpn |Ye, Zt,Yi1, Zi—1,... ) = 0 for all h > 0. max; || Z||* <
M. Z; and ¢ are independent with v;s for alli and s. % ZZ;I VAYA 2y, >0and ﬁ ZtT:1 Zi€ern 4,
N(0,X2z), where X7z, = plim% ZtT:1 ZtZL{eerh.

Assumption 9 is exactly the same as Assumption E in Bai and Ng (2006); see the discussion therein
for details. Let w® = (¥, 8YY, Y = Yiqn, ... Y7V, Z = (Z1, ..., Zr_p,), and € = (€144, ..., e7)". Let
Z; = (fI,W]), where f is estimated using the incomplete panel (y; with di; = 1) and the algorithm
in Section 2.2. Let Z = (Zl, - ZT,h)/. Let @ = (&, B/)’ be the least squares estimator of regressing

Y on Z. Tt follows that Y = Zw® + ¢ + (FO — F)a and

= (Z'2)12'Yy =+ (Z'2)7 2 e+ Z/(F° — F)A).

Theorem 4.2 implies that 2'Z = Z'Z + OP(C]{T). If we take by = €45, in Assumption 7, Theorem
5.1 implies that Z’¢ = Z'¢ 4+ (F — FO)e = Z'e + Op(czl) under Assumption 9. If take by = Z; in
NT
Assumption 7, then Theorem 5.1 implies Z/(FO — F) = Z'(F° — F) + (F — FO)(F0 — F) = Op(CQL)
NT

under Assumption 9. Thus we have the following theorem.

Proposition 5.2 Suppose that Assumptions 1-7 and 9 hold. Then

(i) As (N,T) — 0o, VI(& — w) 5 N(0,5,L5225,%) if VT/N — 0;

(i) A consistent estimator of ¥, 5% 7.5 %, is (7 Zf;h thg)_l(% Zf;h éfﬂ thg)(% Zf;h Z, 7207t

Proposition 5.2 allows us to derive the limit distributions of the conditional mean and the forecast.
The conditional mean of Y7y at time T'is Yy 4 = ¥ £ + BYWr. Let ?T+h|T =afr+ B/WT.
Then (Yrynr — Yoinr)/oy 2 N(0,1), where 02 = 220.5,1 5,551 Zr + La¥s 10 s lal.
Confidence intervals can be constructed accordingly. Compared with Bai and Ng (2006), Proposition
5.2 utilizes the incomplete panel data more efficiently, since we extract the factors through least
squares directly rather than through aggregating the high frequency series into low frequency series

or throwing away those series with missing data.
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6 Simulations

In this section, we perform Monte Carlo simulations to access the adequacy of the limit distributions
in approximating their finite sample counterparts and demonstrate the finite sample performance of
our method. To facilitate graphical presentation for the distributions of the estimated factors and

loadings, we focus on the case with one factor.

6.1 Data Generating Processes (DGPs)

The data are generated as follows. Generate f; as i.i.d. N(0,1) for t € [T] and \; as i.i.d. N(0,1)
for i € [N]. Once the factors and loadings are independently generated, we find G (a scalar here)
to normalize them such that f0 = G'f;, \) = G~1); and %Zle(ff)Q =+ ST (A2, For each
simulation, v;; is i.i.d. N(0,1) across ¢ and t, d;; is generated according to the following four missing

patterns, and y;; = dit (fOA + vit).

Pattern 1 (Completely random heterogenous missing): d;; is binary, independent across ¢ and

t and independent of fto, )\? and vi. pir = E(dy) follows i.i.d. Uniform(0.1,0.9) across ¢ and t.

Pattern 2 (Selection on factors and loadings): Conditioning on #°, dy is independent across i
and ¢ and independent of v;t; Eg(dir) = ®(fYA\Y), where ®(-) denotes the CDF of the standard

normal distribution.

Pattern 3 (Mixed frequency): d;; = 0 if i > N, = N/2 and t/3 is not an integer, i.e., there are
N/2 high frequency series and the frequency ratio is 3. In this case, we consider the mixed

data with both monthly and quarterly observations.

Pattern 4 (Staggered missing): N, = 04N and T, = 047. di = 0 when (i,t) belongs to
{Noe+1<i<07Nand 0.77T+1<t<T}or{0.TN+1<i< NandT,+1<t<T} ie., the
first group has 0.4N units and never gets treated, the second group has 0.3V units and gets
treated from t = 0.77' 4+ 1 to t = T', and the third group has 0.3N units and gets treated from
t=04T+1tot="1T.

The number of simulations is 2000.

6.2 Simulation Results

For all the above four patterns of missing, we use the iterative singular value thresholding (SVT)

algorithm proposed in Mazumder et al. (2010) to calculate the nuclear norm regularized estimator,
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(A, f). Then we use (), f) as the initial value for the EM algorithm and iterate until convergence.
That is, we use (5\, f ) to impute the missing values and reestimate the factors and loadings by the
principal components of this imputed complete matrix, and repeat this procedure until convergence.

Figures 1-4 present the histograms of standardized estimated factors at ¢ = T/2 ( fT/2 — f% /2
divided by its asymptotic standard deviation) and standardized estimated loadings at ¢ = N/2
(XN/Q — )\?V/Q divided by its asymptotic standard deviation) for missing patterns 1-4, respectively.
The standard normal density curve is overlaid on the histograms for comparison. Due to limited
space, we only present the results for (IV,7) = (100, 100) and (N,7T) = (200,200). We summarize
some important findings from Figures 1-4. First, the two subfigures in the first row of Figures 1-4 are
the distributions of the nuclear norm regularized estimators of the factors and loadings, respectively,
when (N,T) = (100, 100). Obviously, these preliminary estimators are biased and shrunk towards
zero, which is due to the shrinkage effect of nuclear norm regularization. Second, the two subfigures
in the second (resp. third) row of Figures 1-4 are the distributions of the NN-EM estimators of
the factors and loadings, respectively, when (N,T) = (100, 100) (resp. (N,T) = (200,200)). The
histograms in all these subfigures match very well with the standard normal density curve, although
missing patterns 14 are quite different and the variances of the unnormalized estimation error ( ft— fP
and \; — M) also depend on (N, T). These results confirm our asymptotic results in finite samples.

Figures 56 graphically present the confidence intervals of the factors {f,t € [50]} constructed
using the NN-EM estimator with (N,7T) = (100, 100) and (200, 200), respectively. The solid curve in
the middle denotes the true factor processes. Since vy is 7.7.d. N'(0,1) in the simulations, Qi = 3¢z
and the asymptotic variance of VN (f; — f?) is ¥}, which is estimated by 3 = + SN i (V)2 Tt
follows that the confidence interval for fO can be constructed as (f; — 1.96\/ﬁ, fi + 1.96\/ﬁ)
for t € [T]. Comparing the results in Figures 56, we can see that the confidence intervals become
narrower as IV and T increase, and in all subfigures the true factor process is covered very well.

To evaluate the accuracy of the factor estimates, we report in Table 1 the correlation coefficients
between the true factors and the factors estimated by NN and NN-EM, averaged over 2000 simula-
tions. We can see that the correlation coefficients are all close to one, and the improvement is obvious
when we compare NN with NN-EM or when N and T increase.

Tables 2 and 3 report the root mean squared errors (RMSEs) of the estimated factors and the
estimated loadings (i.e., {7 Zle(ft — f923/2 and {* Zfil(ﬁl — A)2}1/2) averaged over 2000
simulations. The improvement of NN-EM over NN is also quite obvious. Moreover, the RMSEs of

NN-EM are all very close to the theoretical standard deviations. For example, for pattern 3 in Table
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Table 1: Average Correlation Coefficients of the Estimated Factors

Pattern 1 Pattern 2 Pattern 3 Pattern 4
N T NN NN-EM NN NN-EM NN NN-EM NN NN-EM
50 100 0.972  0.982 0.973 0.980 0.981 0.987  0.951 0.978
100 100 0.987 0.990 0.989 0.989 0.982 0.992 0.977 0.992
200 200 0.994 0.995 0.996 0.996 0.980 0.995 0.980 0.996
400 200 0.996  0.997 0.997 0.997 0.990 0.998 0.984 0.998

Notes: These are the correlation coefficients between the true factors and the factors estimated by NN or NN-EM,

averaged over 2000 simulations.

2, “h/1” denotes the RMSEs of the estimated factors of integer periods and non-integer periods,
respectively, viz, TL/s Zt/S:integer(ft — f92}Y/2 and {Tl/g Zt/#integer(ﬁ — f92}Y2. The effective
sample size for the estimated factors in the non-integer periods and integer periods is N, and N,
respectively, since only the high frequency series are observable at non-integer periods. For pattern
3 in Table 3, “h/1” denotes the RMSEs of the estimated loadings of high frequency units and low
frequency units, respectively, viz., {N%, Zf\gl(j\l — 21172 and {N+NO ZZJ‘\LN0+1(5‘Z' — 21172 Note
that the effective sample size for the estimated loadings of high frequency units and low frequency
units is 7" and 7'/3, respectively. As we can tell from Tables 2-3, the RMSEs decrease as N and T’
increase at rates as predicted by the theory.

We next consider factor-augmented regressions and average treatment effect estimation. For
factor-augmented regression, we generate the data by Y; 11 = a0 0+ W, 4€;41, where o¥ = % = 1,
Wyis i.i.d. N(0,1), and €z is 4.3.d. N'(0,1). The estimated conditional mean is YT+1\T = afr+BWr,
and the 95% confidence interval for Yr yr is (?T+1|T — 1.966y,YT+1|T + 1.966y) where 6y is a
consistent estimate of oy = J% with O’%/ defined below Proposition 5.2. For patterns 3—4, we
generate the individual treatment effects 7;; as i.i.d. Uniform(0.1,0.5) across ¢ and ¢. Then the true
average treatment effect at t =T is 7.0 = N+]Vo Zfi N, +1 Tir and the 95% confidence interval for 77
is (77 —1.966;,, 77 +1.966,,), where 6., is a consistent estimator of o, = \/E with 0’72.T defined
in Proposition 5.1. Table 4 reports the coverage rates for the 95% confidence intervals of Y7 1
and 77 under different patterns and different combinations of N and T based on 2000 replications.
As we can tell from Table 4, the coverage rate is close to the nominal level 95% in all cases. This
demonstrates the validity of using the NN-EM estimated factors and loadings for forecasting and

treatment effect estimation.
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Figure 1: Distributions of the Estimated Factors and Loadings: Pattern 1

ion of the Nuclear Norm Estil Loadings

ion of the Nuclear Norm Estil Factors

go goe o\
§ H] \
g g
8 i /N
T 0. 03 \
/ \
\
02 / \\
/ \
/ \
0.1 / \
[ \*
5 -4 3 2 2 3 4 5
Estimation error Estimation error

NN, N =100,7 =100 NN, N =100,T =100

04 ion of the NN-EM i Factors 0 ibution of the NN-EM { Loadings
0.35 0.35
0.3 - 0.3
/ \ | \
j \
\\
0.25 / 0.25

°

Notes: These are the histograms of the standardized estimated factors at t = T/ 2 and the standardized estimated
loadings at ¢ = IV / 2. The results are based on 2,000 simulations. The curve overlaid on the histograms is the standard

Frequency
°
o

Frequency

°

o
5l

\
/I/

NNEM, N =100,T = 100

lion of the NN-EM il Factors

-
2 3 4 5

°

Estimation error

NNEM, N = 200,T = 200

normal density function.

28

Frequency
°
g

0.15

\
/ \
__.KI '\M

Estimation error

NNEM, N =100,7 = 100

tion of the NN-EM Esti Loadings

Frequency

Estimation error

NNEM, N = 200, T = 200



Figure 2: Distributions of the Estimated Factors and Loadings: Pattern 2
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Figure 3: Distributions of the Estimated Factors and Loadings: Pattern 3
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Figure 4: Distributions of the Estimated Factors and Loadings: Pattern 4
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Figure 5: Confidence Intervals for the Factors by NNEM
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Notes: These are the 95% confidence intervals for the true factor process from ¢ = 1 to t = 50. The confidence

intervals are calculated by NN-EM. The solid curve in the middle is the true factor process.

Table 2: Root Mean Squared Error of the Estimated Factors

Pattern 1 Pattern 2 Pattern 3 Pattern 4
N T NN NN-EM NN NN-EM NN(h/1) NN-EM(h/I) NN NN-EM
50 100 0.483  0.200 0.500 0.205 0.223/0.406 0.136/0.182 0.409  0.203
100 100 0.384 0.144 0.403 0.146  0.158/0.425 0.098/0.143 0.322  0.127
200 200 0.315 0.099 0.294 0.095 0.131/0.374 0.071/0.110 0.300  0.092
400 200 0.325 0.072 0.333 0.075 0.114/0.319 0.048/0.068 0.277  0.065

Notes: These are the root mean squared errors of the estimated factors calculated by NN or NN-EM averaged over 2000
simulations. For pattern 3 (mixed frequency), "h/1" denotes the root mean squared error of the estimated factors of
integer periods and non-integer periods, respectively. Integer periods are those periods when both the high frequency

series and the low frequency series are observable.
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Figure 6: Confidence Intervals for the Factors by NNEM
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Notes: These are the 95% confidence intervals for the true factor process from ¢ = 1 to ¢t = 50. The confidence

intervals are calculated by NN-EM. The solid curve in the middle is the true factor process.

Table 3: Root Mean Squared Error of the Estimated Loadings

Pattern 1 Pattern 2 Pattern 3 Pattern 4
N T NN NN-EM NN NN-EM NN(h/1) NN-EM(h/1) NN NN-EM
50 100 0.461  0.141 0.482  0.148  0.199/0.548 0.098/0.180 0.360  0.125
100 100 0.382 0.142 0421  0.149 0.14/0.614  0.098/0.199 0.315  0.125
200 200 0.316 0.099 0.295 0.094 0.114/0.458 0.072/0.119 0.292  0.090
400 200 0.333  0.101 0.343  0.105  0.111/0.418 0.068/0.112 0.266  0.086

Notes: These are the root mean squared errors of the estimated loadings calculated by NN or NN-EM averaged over
2000 simulations. For pattern 3 (mixed frequency), "h/1" denotes the root mean squared error of the estimated loadings

of the high frequency units and the low frequency units, respectively.

33



Table 4: Coverage Rates of Confidence Intervals

Pattern 1 Pattern 2 Pattern 3 Pattern 4
N T  Yrar Yroygr Yroyr v Yroagr
50 100 0.955 0.950 0.957 0.945 0.957 0.956
100 100 0.950 0.952 0.954 0.932 0.956 0.948
200 200 0.953 0.953 0.956 0.944 0.958 0.950
400 200 0.942 0.947 0.954 0.938 0.949 0.951

Notes: These are the coverage rates of 95% confidence intervals for the conditional mean and the average treatment

effect. The factors and loadings are estimated by NN-EM.

7 Empirical Illustration

In this section we apply our method to the grant allocation data of Fouirnaies and Mutlu-Eren (2015)

to test the average treatment effects of partisan alignment.

7.1 Data

Fouirnaies and Mutlu-Eren (2015) argue that in England the government parties have incentives to
allocate more resources to local councils that are controlled by their own party, since local govern-
ments are mainly funded by the central government and voters’ assessment of the party at the local
level has spillover effects on the assessment of the party at other levels of government. Fouirnaies
and Mutlu-Eren (2015) collect the data of the partisan control of each local council and the specific
grants per capita allocated to each local council for 460 local councils in England from 1992 to 2012,
and they find that partisan alignment indeed brings local councils more resources and the alignment
effect peaks in the third year after alignment.

In this application, the outcome variable y;; is the logarithm of specific grants per capita allocated
to a local council ¢ at period ¢, with (V,T") = (460, 21). At time ¢, council i is considered as treated
(dix = 0) if the government party controls the majority of council 7. Since both y;; and d;; have
missing observations for some (i,t) and we do not know whether council i at period ¢ is treated or

not if dj; is missing, we focus on the data when y;; is observed and d;; = 1 (untreated).

7.2 Estimation

Given {yit,d;t}, we can use the data with d;; = 1 to estimate the factors and loadings. Once we
have the estimated factors and loadings (ft and 5\1), we impute the untreated potential outcome
of the treated y;; (i.e., dix = 0) by 9:(0) = 5\; ft, and the individual treatment effect is estimated

by 7it = yit — 91(0) for all (i,t) with d; = 0. Regarding the number of factors r, for each r we
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randomly cover y;; with probability 0.2, estimate the model using the uncovered y;;, and then use
the estimated factors and loadings to impute the covered y;; and calculate the out-of-sample RMSE.
This procedure is repeated 50 times and the average out-of-sample RMSE for r = 1, 2, 3, 4 and 5
is 0.454, 0.331, 0.332, 0.437 and 0.555, respectively. Based on the cross-validation method of Jin et
al. (2021) for the determination of the number of factors, we can estimate r by 2, which yields the
smallest out-of-sample RMSE. As a robustness check, we shall focus on the results for » = 2, 3 and
4.

To see how the partisan alignment treatment effect evolves over time, we group 7; according
to the number of periods relative to the onset of the treatment and then we calculate the average
treatment effect of each group. For example, if council 1 starts treatment at ¢ = 5, council 3 starts
treatment at ¢t = 9 and council 5 starts treatment at t = 3, then 715, 739 and 753 are in the same
group. Let k denote the number of periods relative to the onset of the treatment and mk denote
the corresponding group average of the treatment effects. An advantage of mk is that it clearly
shows the dynamics of the average treatment effect over time while allowing the individual treatment
effect to be different across both individuals and time.

The top-left block of Table 5 presents mk and its t-statistic for £ = 1,2,3,4 and r = 2,3, 4.
It is clear that the t-statistic of Zﬁ“ & is significant at the 5% level in all cases, and mk increases
with k initially and peaks at k = 3, which is consistent with the finding of Fouirnaies and Mutlu-Eren
(2015). The latter authors consider a panel regression with council-specific linear time trends and a
two-way fixed effects. The fact that ATT r peaks at k = 3 shows that there is an implementation delay
or the government party strategically schedules the grant boost in the electoral cycle to maximize
the election effect.

The middle-left block of Table 5 presents ATT r and its t-statistic for £k = —1, —2, —3 and —4.
m_l is the average treatment effect of the last untreated period before the onset of the treatment,
and m_g, A/T\T_g, and A/T\T_4 are defined analogously. It is clear that {mk, kE=-1,..,—4}
are all close to zeros and mostly insignificant at the 5% level, which confirms that there is no pre-
trend unaccounted by the factor structure. In general, {mk, kE = —1,...} could also help the
researchers to test for the anticipation effects or evaluate the validity of the identification conditions.
The bottom-left block of Table 5 presents mk and its t-statistic for k = +1, +2, +3 and +4.
mH is the average treatment effect of the first untreated period after the end of the treatment,
and m+2, A/T\T+3, and /Tﬁy are defined analogously. {A/T\Tk, k = +1,...,+4} may deviate from

zeros if the treatment has carryover effects or there are time-varying confounders unaccounted by the

35



factor structure. From the bottom-left block of Table 5 we can see that {mk, k=+41,...,+4} are
also close to zeros and mostly insignificant at the 5% level, especially when r» = 3 and 4.

Since the middle-left block and the bottom-left block of Table 5 are in-sample results, we also
calculate {mk, k=-1,..,—4} and {A/ﬁ“k, k = +1,...,+4} using the out-of-sample imputation
errors. More specifically, for each k, we cover the data of y;; at the model estimation stage if ¢ is
the |k|-th period after the end (resp., before the onset) of the treatment of unit ¢, and then use the
estimated factors and loadings to impute the covered y;; and calculate the out-of-sample imputation
error 7. The middle-right block and the bottom-right block of Table 5 present the out-of-sample
mk and its t-statistic for £k = —1,..., —4 and k = +1, ..., +4, respectively.

We summarize some important findings from the right panel in Table 5. First, we can see that
the results of r = 3 and r = 4 are consistent with each other whereas the results of r = 2 tend to
overestimate the treatment effects. Similar patterns also appear in the other three blocks of Table
5. This suggests that » = 2 may underestimate the number of factors and the results of » = 3
and 4 are more trustworthy. Second, we can see that overall ATT _o, ATT _3 and ATT _4 are still
insignificant while ATT _1 becomes significant. The fact that m_l is significantly positive indicates
that changes in the alignment status are related to grant allocation. For example, the government
party may strategically allocate more grants to some swing councils before local elections even if
those councils are controlled by different parties, and then the voters in those councils switch to the
government party after the local elections. In other words, on average aligned councils receive more
grants from the government party than unaligned councils, but unaligned swing councils also receive
more grants. Third, for the post-treatment periods, the bottom-right block of Table 5 shows that
m+3 and m+4 are clearly insignificant, while mﬂ and m+2 are significant when r = 2,
marginally significant when r = 3 and insignificant when r = 4. This suggests that the carryover
effects of partisan alignment are not strong even if they exist. Overall, the out-of-sample results of
the pre-treatment periods and the post-treatment periods are similar to their in-sample counterparts,

except for m_l .

8 Conclusions

This paper develops an inferential theory for the least squares estimators of the factors and loadings
in a large dimensional factor model with missing data. To compute the least squares estimator,
this paper proposes to use the nuclear norm regularized estimator as the initial value for the EM

algorithm and iterate until convergence. Our results cover a wide range of missing patterns, includ-
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Table 5: Testing the Average Treatment Effects

Average Treatment Effect Dynamics
r\k 1 2 3 4
2 0.085 0.089 0.116 0.050
(7.315)  (7.263) (8.579) (2.152)
3 0.029 0.048 0.071 -0.087
(2.797)  (4.442) (5.923) (-4.215)
4 0.055 0.072 0.094 -0.082
(6.066) (7.646) (8.937) (-4.526)
Average Treatment Effect Dynamics Out-of-sample Pre-treatment Results
-4 -3 -2 -1 -4 -3 -2 -1
2 -0.022 0.003 0.019 0.037 -0.059 -0.001 0.054 0.194
(-1.573)  (0.186)  (1.407) (2.878) | (-4.102) (-0.057) (4.041) (15.27)
3 -0.014  -0.002 0.005 0.017 0.012 -0.001 0.006 0.136
(-1.081) (-0.144) (0.395) (1.448) | (0.925) (-0.087) (0.528)  (12.14)
4 -0.013 0.006 0.006 0.016 -0.011 0.010 -0.006 0.154
(-1.139)  (0.059) (0.624) (1.600) | (-0.978) (0.942) (-0.575) (15.69)
Average Treatment Effect Dynamics | Out-of-sample Post-treatment Results
+1 +2 +3 +4 +1 +2 +3 +4
2 0.025 0.045 0.012 -0.005 0.072 0.061 0.014 -0.007
(1.629)  (2.966) (0.710) (-0.249) | (4.918) (4.032) (0.855) (-0.378)
3 -0.009 0.019 -0.003  -0.005 0.021 0.033 -0.001 -0.011
(-0.683) (1.412) (-0.210) (-0.298) | (1.596)  (2.49) (-0.066) (-0.721)
4 -0.008 0.010 -0.004  -0.002 -0.010 0.022 -0.006 0.003
(-0.688)  (0.869) (-0.320) (-0.129) | (-0.824) (1.890) (-0.489) (0.187)

Notes: The table presents the group average treatment effects and the corresponding t statistics (presented in the
parenthesis) of partisan alignment where the groups are determined by the number of periods relative to the onset
(end) of the treatment. The first column indicates the number of factors. The out-of-sample results in the middle-right

block and the bottom-right block are calculated by covering the corresponding period of data.
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ing heterogenous random missing, selection on covariates/factors/loadings, block missing, staggered
missing, mixed frequency and ragged edge. For the matrix completion literature, our results provide
a solution for the post nuclear norm regularization inference under missing patterns much more gen-
eral than existing studies. For mixed frequency factor models, our results provide the asymptotic
theory without aggregating the high frequency series into low frequency series. For panel data with
missing observations, our methods allow us to impute the missing values appropriately even when
the missing probability is correlated with the missing value. For causal inference, our results provide
confidence intervals for the average treatment effects of different groups and time periods.

There are some interesting topics for further research. First, we may extend our results to allow
for nonstationarity in the data. Second, our framework may also cover other missing patterns as long
as we can verify the RSC condition and prove that the Hessian is well-behaved. Third, it is possible
to extend our method to the framework of time-varying factor models as studied in Su and Wang
(2017, 2024) and Pelger and Xiong (2022), among others. Fourth, so far we focus on the pure factor
models, it would be interesting to add covariates and extend our theory to panel data with IFEs.
Fifth, the technique developed in this paper is of independent interest and can be extended to more
general setups that include nonlinear factor models with missing values and nonlinear panels with

IFEs and missing values. We leave these topics for future research.
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This online supplement is composed of five sections. Sections A—D contain the proofs of Theorems

4.1-5.1, respectively. Section E contains the proof of Proposition 5.1.

A Proof of Theorem 4.1

To prove Theorem 4.1, we introduce the following two lemmas.

Lemma A.1 Suppose Assumption 4 holds. Then as (N,T) — oo, ||[dov| = Op(N%T% + N%T%),Q
where o denotes the Hadamard product so that dov is a T x N matriz with dyvy as the (t,i)th
element.

Proof. Note that

[dov||* = |[(dov)(do v)H2 < |l(dow)(do v)HQF = thzl(Zil disvisditvit)?
T N T N
< 2 Zs,t:l E(Zi:1 [disvisditvie — B(disvisdizvi)])? + 2 Zs7t:1(zi:1 E(disvisditvit))®

211 + 211 2,
where ZsT,tzl = 23:1 Zle . By Assumption 4(ii)-(iii),

T 1 N
It = N Zs,t:l E{\/_N Zizl[disvisditvit — B(disvisdivi)]}* = O(NT?),

T T
ho = N*ST0 (s OF SMN2YD (s )] = ONT),

where we also use the fact that maxg; |yy(s,t)] < maxsyy(s,s) < M by the Cauchy-Schwarz (CS)
inequality. Then E||d o v||* = O(NT? + N2T) and the result follows by the Markov inequality. m

Lemma A.2 Suppose Assumption 2(i) holds. Then as (N,T) — oo, ||[d —Ey(d)|| = Op(N%T% +
N%T%), where d — Bg(d) denotes the T' x N matriz with diy — BEg(di) as the (t,1) element.

2The rate Op(N%T% + N%T%) is not sharp, but is enough for our purpose. If d;;v;: is independent across ¢ and ¢
and its fourth moment is uniformly bounded over ¢ and ¢, results in random matrix theory show that this rate can be
1 1
improved to O,(N2 +1'2).



Proof. Recall that d;; = d;; — Eg(dit). As in Lemma A.1, we have

[(d — Ey(d))'(d — By(d)||” < [|(d — By(d))'(d — Eg(d))|| 7
T N - -

= > O disdi)

Since dj is independent across i conditional on ¢°, we have

ld — Eg(d)]*

T ~ o~ T N ~ o~
Bold—Bod)* < 23 Bold (i~ Boldudi)] P +23 (3 B(disdie)

S T N I
= 2 Zs,tzl Zizl By[disdin = Bo(disdit)* +23 | [> 7 Bo(disdi))*

The first term on the right hand side (RHS) of the above equation is bounded by 2 Eztzl Zfi 1=

272N, and the second term is bounded above by

T
AN?3" a5 t)] = Op(N?T)

under Assumption 2(i). It follows that E¢\|d—E¢(d)||4 = Op(T%N + N?T) and ||d —E(d)|| =
O(N2Ti + NiTz). m
Proof of Theorem 4.1.

(1) The random missing case. Let 0; = fiA\; and 6% = f¥X\). Since P()\,f) = 0 and
PO, f9) =0,

QA )=\, 1% Z_IZ divvir (0 — 0%) 221 1Zt da(Bu = 00)? > 0. (A1)

Let © (resp. ©°) denote the T x N matrix with (¢,7)th element given by 6 (resp. 6%). Since
rank(6 — %) < 2r and [tr(AB)| < rank(B) ||A| || B| -, we have

N T N N T ~
DD DR EEAER DA SHRCE S

By the submultiplicative property of the Hadamard product (see, e.g., Theorem 5.1.7 in Horn and
Johnson (1991)), rank((© — ©°) o (6 — @°)) < 4r2. Then

S S (i~ Bglda)) (B~ 637 < 47 |- By [ S (B — 0%)Y)
< ar?ld—Bo(d)| MY S (B~ 69713 (A3)

M

(A.2)

IN

A



where the second inequality holds by the fact that 9?,5 is bounded by Assumption 1 and 0,1 is bounded
by design. It follows that

2r||d o || Z Zt (6 — )22 + 212 ||d — By(d ”MZﬂZ —09)2)2
> ZZ 12 ditvie (Oir — 0 Zz 12 (dit —Eg(dur)) (Bix — 05,)
> oS ST B (B - 65
> SN S B0

where the first inequality holds by (A.2) and (A.3), the second one holds by (A.1), and the last one
holds by the assumption that Ey(d;z) > ¢ for all (¢,¢). Then by Lemmas A.1-A.2, we have

r2
ot < A M UNT
Zi 1Zt ) Oir — 0%)%]2 §?||dov||+ |d — By(d)|| = Op( CNT). (A.4)
Let o1, ...,00 and 61, ..., &, denote the first r largest singular values of £ AT and F—AT,respectively,

ordered from the largest to the smallest. Let eq,...,e, and éy,..., €. denote the corresponding left-
singular vectors. By the Davis-Kahan theorem (see, e.g., Yu, Wang and Samworth (2015)),

V2 V2

A FA/ FOAO/
&5 — el < el

UNT VAT,

FA FOAY
VNT /NT

(A.5)

where = min{|oj_1 — 6| A |oj41 — 5], = 1,...,7}. 1 is bounded and bounded away from zero

in probability because (1) o}, j € [r], are all bounded and bounded away from zero in probability,

. . y s . N F]\/ FOAO/
and o; are different by Assumptions 3, (2) by Weyl’s inequality, |o; — ;] < ‘ v ||, =

Op(ﬁ) for all j € [r]. Thus max;cp,[|€; — e;| = Op(ﬁ)‘ From the conditions (2.7) and (2.6),
we know that the j-th estimated factor is /710 ;é;, and the j-th factor is y/T'oje;. It follows that

7= < mas]| VT2 - /T

Jelr]
< max|\/T6; — \/TO") lé;]| + max\/Toj||é; — ej]| = Op( VT ).
— el J J J el J =g J p \/m

. ; Y 2\ — VN
By symmetry, we also have H)\ - H = OP(W)'

(2) The block missing/staggered missing/mixed frequency case. Note that missing only
occurs for ¢ > N,, which implies that d; = 1 for all ¢ € [N,] and ¢t € [T]. For i > N,, define
T, = {t€[T], dyx = 1}. Clearly, 7; = [T,] for the block missing case, 7; O [Ty;] for the staggered

treatment case, and 7; = {t € [T'], t/h is an integer} where h denotes the frequency ratio (e.g., h = 3



when we have monthly and quarterly data). Then equation (A.1) becomes

Z Z vit(Bin = 031) +Zijo+1ZteTU” biv = 0%)
_—Z Zt (B —03,)? ZZ Nost Doy (B = 60)* = 0.

We consider two cases:

Case (a): Zjvzol ZtT:l(éit - 9?15)2 > ZZNOH Z Tl(ézt - 9?15) )
> A

Case (b):

In Case (a), we have

N

4r\dovuz Ztl i — 09)%)7

> Z Z 'Uzt 0 +Zz Not1 ZtGT 'Uit(éit_ggt)
Tm A

2 Z Zt 1 Oit Zz N0+1Z Oit

>

QZ Ztll ’

(A.6)

(A.9)

where the second inequality follows from equation (A.6), and the first one holds by the fact that

Z Z vit(Os — 63) = Z Z divi (6 90)
2r ||d o v| Z Zt . 0;r — % and
Zz No+1 ZteT illie = 03) = Zi:NOH Zte% ditviy Hit_ggt)

arfdonl (30 S0 (02
< 2rfdoo (Y S (O

by (A.7) and similar arguments as used to obtain (A.3). Then by (A.9) and Lemma A.1

IA

IA

(SIS

Z Zt L O:e — 05)°] 7 < 8r||dowv| = Op(N%Ti +NiT%),
which, in conjunction with (A.7), further implies that

213 212 1.1 1.1
Zz No+1ZtET it 9?'5 ZSZ Z H?t 2:Op(N2T4+N4T2).

Given that N,/N and T,/T are bounded away from zero, equation (A.10) implies ||f —
SRIRE

N

Op(HL) and (S [|Ai = A[2)% = 0, (22), and equation (A.11) implies (X x, . [

VENT VENT

(A.10)

(A.11)

Il =



= 0,(¥X=L2), Then we have ||A — A\?|| = O, (=LL).

VENT VENT
Similarly, we can show that ||f — f0|| = Op(j%) and ||A — \%|| = Op( gT) in Case (b). B

B Proof of Theorem 4.2

To proceed, we introduce some notations associated with the Hessian matrix of @) (¢) . Define

Oppr L(9) = Ly () + Jpr (9), (B.1)
g P(0) = Pyy(9), (B.2)
Oy Q(P) = Hyy (9) = Ly (9) + Sy () + Py (9), (B.3)
(my — | Law(@) Lap(0) ) 0 JDap(9)
Foo(9) [ Liv(#) Lep(e) |77 ) [ Jin(9) 0 ] 7 B4
y — | (@) Hyp(9)
Hoar(?) [ Hyy () Hyp() ] (B5)

When these matrix are evaluated at the true value ¢°, we suppress the argument. That is, we simply
write L¢¢/(gb0), J¢¢/(gb0), Pd,d,/(géo), and H¢¢/(gb0) as Lygs Jpgrs Pyy, and Hyy, respectively. Note
that Ly, is an Nr x Nr block-diagonal matrix, with the ith diagonal block of size r x r given by
— Zthl di fOfY; L 7fis a T'r x Tr block-diagonal matrix with the ¢-th diagonal block of size r x r
given by — Zi\il digAINY; Ly is of dimension N7 x Tr with the (i, ¢)th block of size r x 7 given by
—di fONY; Ly is the transpose of Lyp. Jyp is also Nr x Tr with the (i,t)th block of size 7 x r
given by djvily; J £y 18 the transpose of Jy .
Define

IN(X)Lq 0
0 —[T®Lq

D, =

, and D3 =

IN®tp, O |0 0
0 01’ 0 I ® tpg

where ¢4 is an 7 x r matrix with the ¢g-th diagonal element being one and all the other elements being
zero, and v,y is an 7 X r matrix with the (p, q) element and the (g, p) element being one and all the

other elements being zero. Define the following three sets of (N7 + T'r) x 1 vectors:

wpp : For 1 < p <7, wpy is an Nr 4 T'r dimensional vector; for the first N7 elements, in the i-th
block, the p-th element is \;, and all the other elements are zeros; for the last T'r elements, in

the t-th block, the p-th element is —f;, and all the other elements are zeros.

Upg : For 1 <p < q <7, upy is a Nr+ T'r dimensional vector; the last 7' elements are all zeros; for

the first Nr elements, in the i-th block, the p-th element is A4, the g-th element is \;, and all



the other elements are zeros.

ugp : For 1 <p < q <, ug is a Nr + Tr dimensional vector; the first Nr elements are all zeros;
for the last T'r elements, in the ¢-th block, the p-th element is fi,, the ¢-th element is f;, and

all the other elements are zeros.

When A = A and f = f° so that ¢ = ¢°, Wpp, Upg and ug, are denoted as wgp, ugq and qu,

respectively. One can verify that

SER SR, P vy

O (=5 =) = 8D N rwppwl, Dy + 4( ~ 7 )Dyi-Ds, (B.6)
Osir (0 Nhi)?) = gy + (3 Nighig) Dil. (B.7)
Dy ( Zthl fwfu)?] = 2[ugpig, + (Zle fipfiq) Da]- (B.8)

Since £ F¥F0 = £AYA? and both are diagonal, the second term on the RHS of equations (B.6)-(B.8)

are zeros when ¢ is evaluated at the true value ¢°. It follows that

1 _1 r 1
P,y = —cD2,D,? E i E E !+ E E 2D2
ol Dt ( = pp pp p=1 Latg=p+1 pq pq p=1 Ladtg=p+1 qp qp Dy Dry
1 1
_ 2 271707707 2 2
= —cD2\DAUUYD\2D2,,, (B.9)
where
0 _ 0 0., 0 0 0 0 0 .,,0 0 0 0 0
U™ = (Wi ooy Wy U1 ooy Uy, U3 woes Uy ooy Uiy 1)y ULy ooy Upd s Uy woes Upy oo Uy 1))
— 0r 770ry/

Here, U% is an (N7 + Tr) x r? matrix, U? contains the first Nr rows of U° and U}) contains the last
T'r rows.

_1 _1
Lemma B.1 Suppose that Assumptions 1, 2(i) and 3 hold. Then ||(—DTK,H¢¢/DT§,)_1|| = 0p(1)
as (N,T) — oo

Proof. To proceed, we introduce an (N7 + Tr) x r2 matrix W0, which specifies the null space of L b¢'

and plays an essential role in the following analysis. For 1 <p < ¢ <, wgq

for the first N7 elements, in the i-th block, the p-th element is )\?q and all the other elements are

isa (Nr+1Tr) x 1 vector:

zeros; for the last T'r elements, in the t-th block, the g-th element is — ft% and all the other elements
are zeros. wgp is also an (N7 + T'r) x 1 vector: for the first Nr elements, in the i-th block, the ¢-th

element is )\?p and all the other elements are zero; for the last Tr elements, in the ¢-th block, the p-th



element is — fgl and all the other elements are zero. Let

0 _— 0 0.,,0 0 0 0 0 .0 0 0 0 0
w = (wll,...,U}T,r,w]_2,...,wlT,w23,...,'IU2T,...,U}(Til)TfLUQ]_,...,wrl,w:n,...,’LUTQ,...,QUT(Til))

Wy, wi'y. (B.11)

Here, W)(\) contains the first Nr rows of W0 and W}J contains the last Tr rows. It is not difficult
to verify that any two different columns of W9 are orthogonal to each other, the (i,t)-th block of
WQW})’ of size r x r is — fOAY,

LyyW° =0and S;W° = 0. (B.12)

Let I_JM/ = Ey(Lyy) and define FI¢¢/, Lyy, Lgp and Lyp similarly. Let 1Y denote N x 1
vector with the i-th element being one and all the other elements being zero. Let ]ZIM,/ = E¢¢/ —
11 11
cD2 D\ EWOWYD 2 D2 ... Then by (B.3) we have

o 1 _1 _1 1 _
Hyy = Hyy + [Py + D7 DygWOWYDNEDEN] + (Lo — Log) + Jyy, (B.13)
where
!/
. N T 1IN @ f9 N
_H / = ]E{ dZ —C ! f
¢ Zi:l Zt:l( oldit) =) ( 172\ 17 @ A
SWIWY 0 In® ey FY 0
+ cN 70707 N oy | (B9
0 DWW 0 Ip @c) il A A

We will study each term on the RHS of (B.13). In Step (1.1)—(1.3), we study FI¢¢/, Jyg» and
Ly — [_/¢¢/ in order. In Step (2), we focus on Py + cDi%,ND;éFWOWO’D;éwD%N.

Step (1.1). We study FI¢¢/. It’s easy to see that the first two terms on the RHS of (B.14)
are positive semi-definite. This implies that amin(—D;]%vaM/D;J%) is bounded away from zero in
probability by Assumption 1.

Step (1.2). We study J,. Since ||D;J%J¢¢/D;]%|| is bounded by \/% ||d o v||, by Lemma A.1

we have
-1 1 —1/2 11 1,1 1
Dikday Dk | = (NT) V2 0,(NETE + NTH) = 0(——). (B.15)
Step (1.3). We study Lyy — Lyy and show
1 1 N* Tx 1
D2 (Lyy — Ly VD2l = Op(—= + —= + : B.16
' TN( P (;5(;5) TN p(ﬁ \/N CNT) ( )




By (B.4), it suffices to prove (B.16) by showing that

= 1

L — L] = Op(VTN%), (B.17)
= 1

[Lsy = Lypll = Op(VNT), (B.18)
- VNT

HL)\f/ — L)\f/ = Op( CNT)' (Blg)

The proof of (B.19) is similar to that of Lemma A.2. The (i, ¢)th block of Lyp — Lygs of size r x
is (dit — Ey(di)) fPAY, the (s, t)th block of (s — Las ) (Lap — Lag:) of size r x 7 is SN | disdisaiss,
where dj; = d;; — Eg(di) and ajee = A FO7FONY et ist.pg denotes the (p, q)th element of a;. Let

ZsT,tzl = 25:1 25:1 and Z;,q=1 = Zp:l Zq:l - Then

4

)
—_ - 2 — —_

= Ey(||(Lap — Log) (Logr = Lag)||7) < Bo(|[(Lag = Lagr) (Lagr — Layr)

= Y ST B didiainsg)?
st=1 pa=1 zlzs it zts,pq)

Eqﬁ(HLAf' — Ly

7

< Zs =1 Zp g=1 ¢{ZZ_ dzsdzt - Eqb( Gzts,pq} +2 ZS =1 qu 1 Z Ed’(d’bsd’bt)azts,qu
= Zst 1 Zp g=1 Zz 1 E¢> dzsdzt ng)(dzs ~zt zts ,Pq +2 Zs =1 qu 1 Z (J J )alts’pq]Z

= 2A1,1 + 2A172

where the third equality follows from the conditional independence condition over ¢ in Assumption

2(i). It is easy to see that

E (Al,l)

IN

Zst 1qu 121 1 'Ltqu O(T2N), and
A1’2 - Zs,t:l Zp’qzl Zz (d'bsd’bt)Azp s f ]

T
< MN? Z&tzl Yya (£, 8) = O, (N?T).

It follows that E¢ HL>\]” — l_;)\f/ 4) = Op(T2N+N2T) and HL)‘J“ — I_/)\f/

Op( \/—VCNT) This proves (B.19). For equation (B.17), we have

_ Op(T1/2N1/4+N1/2T1/4) _

F 1
= (max )=

; Zj:l[dit — By (din)l £ 17"
N
- (Zizl

The last equality is due to E(+ Zfil H% Zthl[dit — By (di)] £ £
Analogously, we can prove (B.18). Then the result in (B.16) holds.

K

Z;[dz’t —Ey(da)l 217 )% = Op(VTN¥). (B.20)

H) = O(1) by Assumption 2(i).




Step (2). We study P,y + CD%ND;%WOWO’DR%FD%N on the RHS of (B.13) and show that it
is asymptotically negligible in comparison with the other terms. The proof is similar to step (2) of
Lemma 2 in Wang (2022) and we present it for completeness. Since the columns in WO are orthogonal
to each other and also Orthogonal to L¢¢,/, the p051t1ve deﬁmteness of =D, NH ¢¢/DT N implies that the
eigenvectors of DTNL¢¢/DTN together W1th {DNTwpp/HDNTwppH p € [r]}, {DNTwpq/HDNTwqu
p€|r],g=p+1,...,r} and {DNqup/HDNqupH, p € [r], g =p+1,...,r} constitutes an orthonormal
basis. Under this basis, for j € [r] and &k = j + 1,...,7, let (u? Ui 15 - ]k (NAT)r—r(r- 1)) 1clenote
the coordinates of uj .. corresponding to the eigenvectors of D, NL¢>¢>’DT 2 and D, NTwpp / ||D NTwppH

1

and let u%  and ujk’q denote the coordinate of u? sr, corresponding to DNTwpq/ ||DNTwp || and

Jk.pq
1
D Nqup /||D Nngpl |, respectively. The coordinates of u ; are defined in the same way.
To prove the lemma, it suffices to show that there exists C' > 0 such that for any vector a with

1 1
lall =1, &/(=DpRHyy Dypg)a > C > 0 w.p.a.l as (N,T) — co. Let

(al,.. a(N_,_T)r r(r— 1) a1y .. ah«,agg,...,agr,...,a(,,_l)r;agl,...,arl,agg,...,arg,...,ar(r_l))

be the coordinates of a. Plugging this into (B.13), we have

1 _1 _1_ 1 _1 _1
(=DpyHyy Dpi)a = d/(=Dpi Loy Dri)a+ ' (=Dpy Pyy Dria
_1 _ _1 _1 _1
—a' (DR (Lgg = Lgg) Dpi)a — '(DTJ%JMDTJ?/)
= d(- DTNL¢¢/DTN+cZ Dzl w® DyEa (B.21)
ped | Y (e (B.22)
j=14~k=j+1" N T '

1

_1 _ _1 _1 _1
—a'(Dp(Lygt = Lgg ) Driy)a — o/ (DpiJyy Dy )a (B.23)

The term (B. 21) is not smaller than b Z(NJFT)T r(r=1) a? w.p.a.1 because the smallest nonzero eigen-

1 1 1
value of —DTNL¢¢/DTN +ed Nngpw%DN% is not smaller than omin(—DpyHyy Dppy). The
(a'uly)? (a’ug])Z]

term in (B.22) is not smaller than ¢1 377 37 [—F— + —F

for some 0 < ¢; < ¢. How to

choose c¢; will be discussed later. For o’ ugj, we have

(N+T)r—r(r=1) o 1
(a/ uk] = Zp— Zq p+1 qukﬂ pg T aqpuk] qp)l2 B Q(lel o alz); HungQ.

Thus the term (B.22) is not smaller than

T T 1 r T 0 0 2
“ Zj:l Zk:j+1{ﬁlzp:1 Zq:p+1(apqujk,pq + aqpujk,(ﬂl’)l



1 r r 0 0 )
T Zp 1 Z g=p-+1 apqukj g + a’qpukj qp)] } (B.24)

(N+Tr r(r—1) 2
—201(21 1 2 ZJ 12 k=j+1 N H ]kH Hugju ) (B25)

(N4+T)r—r(r—1)
=1

By Assumption 1, expression (B.25) is not smaller than —2c¢;r(r—1)M( a%)% for some

M < oo w.p.a.l. To evaluate the expression in (B.24), let

x _ /0 0 ..,0 o . ..0 ) 0 ..0 0o . ..0 /
U = (ujk,127 ooy Wi 105 Wik 235 +oos Uk 295 -3 Ui (r—1)p> Uk 215 =) Wy 15 Wk 325 +oos Uk 125 "‘7ujk,r(r71)) .

Define uj; similarly. The dimension of u, is (r DI ( D r(r—1). Let

1 1
* —= )k ok ® Lk LS (K ® ok * L,k
U* = [N72(ulg, ooy ULy Udgs ooy Uy o3 Up1)y )3 T 2 (U1, ey Uy 3 U oony Ui o3 Uy )]

Then the term in (B.24) is not smaller than ¢10min (U*U*) Y0 Y011 (a2, +aZ,). Under Assump-
tions 1 and 3, plimU* is full rank. which is to be proved later. Thus plimU*U* is positive definite.
This implies that there exists @ > 0 such that o (U*U*) > @ w.p.a.l as (N,T) — oco. It follows

that expression (B.24) is not smaller than c¢;w Zp 1 Zq p+1(apq +a2,) w.p.a.l. Finally, equations

(B.15)-(B.16) imply that the term (B.23) is O (\/i 7\;% + ﬁ) Then the term term in (B.23) is
not larger than <= w.p.a.1.

Combining the above analyses, we have that w.p.a.l,

_1 _1
o'(=DpfHyy Dpiy)a

(N+T)r—r(r—1) o r r 9 9
= bzz:1 a; +aw szl Zq:pﬂ(am + agp)

—2cyr(r — 1)M(Z§N;T)T7T(Tfl) a%)% - cl?w
SETE) VIR SEERE TR AN EEE =
> cw — C%TQIST__CEY);M2 _ 013w
- ate cmz - 2;% — 0 ClSW‘ (B.26)

When ¢; is small enough, c1w? + ¢172 (r— 1)2M 2 is smaller than %”. Thus when ¢; is small enough,
the term on the RHS of (B.26) is not smaller than <. Taking C' = <Z, we have proved that
a’(—D;I%HW/D;J%)a > C w.p.a.l.

Now, we prove the full rankness of plimU*. We shall prove this explicitly for the case of r = 3;

the other cases can be shown similarly. When r = 3, after some calculation, we find that U* is given

10



— N T -
% 1':11()‘?2)2 0 0 7% Zt:l(f?l)2 O 0
HD;%wlz Dz?r%“’?z
1 N (4,02 1T 02
O N Zi':ll()‘iS) 0 0 T Zﬁt:l(ftl) 0
HDN%wm N%“’%
1L <N (1,0 1 T
0 0 N i‘:l1(>‘¢3)2 0 0 T Zt_:l(ftOZ)z
HDN:%“’g?) N7 W33
% Zﬁvzll()‘?l)Z 0 0 7% Z€=1(ft02)2 0 0
HD;f%wzl D;r%wgl
1 =N (02 1 T 02
O N i:llo‘il) 0 0 - T zzt_:l(fﬁ) 0
HDN?F“’M Dy7w3y
N T
O 0 % i:ll ()‘?2)2 0 O 7% Zt:l(fé)S)Q
-3 -2
L HDNTw32 Nngz

Note that %ZtT:l(ft%)Q = ]{[Z ()\0) for p = 1,2,3. Now consider (plimU*)g = 0 for any
vector g. If plim= Zfil()\ \)? # plims ZZ L(A%)2 then g1 = g4 = 0. If plim+ ZZ L(A2)? £
plim— Zi]il()\?3)2, then go = g5 = 0. If plim+ Zi:l()‘m) # plim+ Zi:l( %)2, then g3 = g6 = 0.
Thus ¢ = 0 by Assumption 3. =

Lemma B.2 Suppose that Assumptions 1, 2(ii) cmd 3 hold. Then as (N,T) — oo, we have

(=D Hoy D) = 0p(1) and ||(~ D Hog D)~ | = Op(1), where
fA 0 Ip @ 30, AN '

1
Proof. For the random missing case, we directly use D ~ to normalize H¢¢, here it is crucial

to use Df/\ . For the random missing case, we first prove that amin(—DTNH¢¢:DTN) is positive
and bounded away from zero in probability, and then prove that the conclusion still holds when
D;,%TWOWO/D;,%T is replaced by D;]%TU g D;,%T For the block missing/staggered missing/mixed
frequency case, the roadmap is similar, but the technical details are quite different. A key strategy
utilized in the proof of Lemma B.1 is that Eg(d;) > ¢ > 0 uniformly over 7 and ¢, which is no longer
true for the block/staggered missing case because d;; is always zero for some i and t.

The key step is to calculate all the eigenvalues of —D;/\% L¢¢/D;A%. To do so, we distinguish
between the block missing case and the staggered missing case. The results for the former case are
summarized in equation (B.42) below and we have confirmed that these calculated eigenvalues are
correct using MATLAB program. To help the readers to understand the proof, we also add the proof

for the simple case with r = 1 after we present the proof for the general case with r > 1.

11



_1 _1
Step (1) We show that all of the nonzero eigenvalues of —fo L(M,/fo are positive
and bounded away from zero w.p.a.l.
(I) The block missing case
Step (1.1). Note that —L¢¢/ = _Ld)¢,full — (_Lgbgf)'mis)? Where

i T 0
I B IN@ Y JOR (0N ) e (B.28)
o' full = 20 O/ I NN '
( ift )Nr><Tr T®Z
ONyrx N,r ONorx Npnr ONyrxTyr ONorxTpnr
T
I ‘ ONm,T'XNoT INm ® Zt:To—H ftoftOI ONmrXToT ( tO)‘?,)NmTXTmT (B 29)
PP’ mis Y
OTOT‘XNO’/‘ OTO’I‘XNmT‘ OTOT‘XTOT’ OToT’XTmT
L OTmTXNoT' ()\’?flfO,)T7nTXNmT OT'mTXToT ITWL ® ZZ]\LNOJ'_l )\ZO)\,[L)I

Ny =N =Ny, Ty =T —T,, and (fOA) N, rxT,,» denotes the Ny, x Tp,r matrix with fOAY as the
(i,t) block for i = NO+ 1,....,Nand t =T,+1,...,T. In the following we shall calculate all eigenvalues
of D L¢¢/D

First, let ft = (Zt 1 ft = 3 I and A= (Zf\il PYOV )7%)\? denote the normalized factors and
loadings. DfA L(M,/fu”D X and Df/\ Ly D;A% has the same expressions as (B.28) and (B.29),

mis

respectively, once we replace f0 by ft and \) by AP. Similarly, we define Wy, Wpo and wg, by
replacing f? by f7* and A\) by A? in pp, pq and w . Let
W™= (W11, ooy Wi Wy oy Wy, W3, ey Wiy ey W1y, W5 ooy Wy, WD, ooy Wi ooy Wy _1))
= (W"’,W}“)'. (B.30)

It is not difficult to verify that any two different columns of W™ are orthogonal to each other, any
_1 _1 _1
column of W is orthogonal to both —D & Lyy ¢y Dy} and —D 2 L¢¢/miSDf>\ We can also verify
that the (i, ¢)th block of WIW ' is — PN and WMWY =370 ST wpwe.
For p,q € [r], let w}, ; denote the i-th block of wy, of size r x 1. [Each block is an 7 x 1 vector

— / n — n/ n/ /
and there are N + T blocks in total.] Let wp \ = (Wpg 1, Wpy n,)s Whon = (Who N 15+ Wpo N)'s

n _ n/ n/ / n _ nl / n — n/ n/ !/
Wpef, = (wpq,NJrl’“"7’qu,1\f+To)7 Wpgfum = (wprLNJrTle’“"wptLNnLT)7 Wpgr = (wqua’wqum) and
n _ n/ n/ / n/ !/
wp ¢ = (Wyar s Wpar ). Then wy, can be written as (wy;, wy, ;)" and

/
_1 _1 wn wn
—-D.2[,. ., D.2 _ A A
A Ho9 full ™~ FX ( _Tn ) ( _TUn )
Wy Wi

/
_ Iny (FENINexrr | [ WX Wy
(/\?ff')Trer IT'I‘ —W}l —W}L

12



r T n n/
[ INT’ - Zp:l Zq:]_ wpq)\wpq)\ ONT’XT’!‘

O7rx N7 Ity — 217;21 2221 wﬁ:)Lwai%f
N—
2p=1 2 =1 (§ @ 1) (& @ 1) ONrsr (B.31)
OrrxNr > o1 Z]T:_{(Xj ® 1) 1)

where 1), denotes the 7 x 1 vector with the p-th element being one and all the other elements being

zero, and the last equality is due to:

(1) Iy, = 22:1 In ® tp, where ¢, is an 7 X 7 matrix with the p-th diagonal element being one and

all the other elements being zero;

2) {&:,7 €[N —r]} and {\? = (A, ..., \},), ¢ € [r]} together constitute an orthonormal basis
J q 1q Ngq
. . . N—
for the N dimensional vector space; Since Iy = ijlr EJ{; + 22:1 )\Z)\Z’ and wy, \ = AL @17,
we have

r N—r
IN® = W=D (§ 81O 1);

(3) Similarly, {x;,j € [T'—r]} and {f5 = (fiy; - f7,)'s @ € [r]} together constitutes an orthonormal
. . . . T—
basis for the T' dimensional vector space. Since Ip = Zj:{ ij;- + 2221 f.Zf.Z’ and wy, » =

[ ® 15, we have

T T—r
In @y =) Whostipes = ijl O @ 1) ® 1)
How to choose §; and x; will be discussed later.

Step (1.2). Similarly, we also have

_1 _1

0 0 0 0 0 0 0 0
T n fn nyn
_ 0 INm ® Zt:To+l ft t ' 0 (-ft )\l /)NmT'XTmT o A3: 0 Al 0 0 7(B32)
0 0 0 0 0 0 0 0
0 O TN |0 T1 @ S0y, oy APAY 00 |0 A

where the dimension of the zero matrices are self-evident, the second equality is due to — Z;:1 22:1

n n/ — n\n/
wqu"prqfnl == ( t )\,L )Nm’/‘XTmT'7 and

n n/
T T r 2 Wy Wpaa
_ n gn/ n Pq Pq
A = INm®E B It T _E:_ E:_ prquH = ik
t=To+1 p=1 q=1 w™ w™
PgAm PgAm

/
N . r 9 wn wn
_ nynt Z n Pqfm Pqfm
A = Ir, @ Zi:No-i-l A p=1 Zq:l 5o W o' . I
Pqfm Pqfm

13



A T ' A /
3 — E p:1§ 3pq‘13pq>

prquH n/

|15
wpq)\mv Ol XTory —

PaAm H W )/

A3pq = (01><N0r7 qum

n
wPQ>\7n ‘ ‘ pq,fm ‘ ‘

Without loss of generality, we can consider Z?:TO 1 U and Ef\i No+1 AP AT as diagonal. For exam-
ple, if ZtT:TO 41 f{'f{" is nondiagonal, we can replace f{' by fi""" = F}m o 1= Flfm fm(ZtT:l e /)7%f? 5
where Iy, ¢ is the eigenvector matrix of ZtT:TO 41 U f{. This makes Zszo 1 SO diagonal and

does not change the eigenvalues. When ZZ;TO 1 U is diagonal,

T T T
n enl n\2
In,, ® E =T 41 fe f = E p:l(E t:TO+1(ftp) N, @ tp.

2
For each given p, wp \ = (A, 1)q: -+ ANg) ® 1, and ngquH = ZtT:TO+1(fZ;,)2 for all ¢ € [r]. Tt
follows that

A= Y N,
n n/
Zp— Zq 1 Zt T+1(fgflj)2)HquAm e

n
Wpahm H prq/\m

_ r T n\2 I r wIT)Lqu wg‘;Am
= Zp:l<zt:Ta+l(ftp) N, @1 — Zq:l H - ]

n
PgAm prqkm

= Iy @ 1)y © 1)) (B.33)

where {¢,,,;, j € [Nm—r]} and {\7,; = (A{y, 41)g> -+ ANg)'s @ € [r]} together constitute an orthonormal

basis for the N;, dimensional vector space. Similarly, when Zf\i Nyt1 APAY is diagonal,

N nant T N -
I, ® ZZ:NOH AN = Zq=1(zi:1\ro+1(/\iq) )1, ® L.
2
For each given ¢, wgqu = (f(ToH >pr) ® 17 and prq)\ H = ZZNN +1()\ )2 for all p € [r].
Thus
T N N 2
A2 - Zqzl(zi:Na+1(Aiq) )ITm ®Lq

2y What,  Whes
_ n m m
S > o (M) )H

n n
Wpafm H prqu H

n
Wpgfum qum

H“’qumH H qumH

N

- ZZ:I(Zi:No+1()\Zq) W @ g = ZT

14



N

_ r n\2 Tm=r r r\/

- Zq:l(zi:No+1()\iq) )[ijl (ij ® 1q)(ij ® 1q) ]a (B34)
where {X,,;, j € [T —7]} and {f}},, = (leToH)p’ ws f1)', p € [r]} together constitute an orthonormal
basis for the T, dimensional vector space.

Step (1.3). Since Zz‘]\iNaH AP is diagonal, A A7, = 0 for any p # q. Since Zfil ANPAY = 1T,.,

vaz(’l AP is also diagonal, implying that Ap)A;, = 0 for any p # g where A}, = (Al , ..., AR, ,)"-
Choose &,; such that {€,;, j € [N, — 7]} and {);,, ¢ € [r]} constitute an orthonormal basis for the

N, dimensional vector space. Then the following set of vectors are orthonormal,

1|

e .
( §Oj > 5 ( 0N0><1 ) ) H)\H)\H ||Oq ) ( )\Oql ) . (B.35)
Ot [ sevgmr) \ Smi ) jepvnen) \ — e g i/ ey

q€(r]

The first three sets contain N — r vectors in total, and we choose them as §; for j € [N —r].

Since Z?:T L1 SRR s diagonal, fii i, = 0 for any p # ¢. Since Zt VR =1 Z Y
is also diagonal, implying that ff2, = 0 for any p # ¢, where f;, = ( figs s 1T, q) Choose x,,; such
that {x,;, j € [T, — r]} and {fy,, ¢ € [r]} constitute an orthonormal basis for the 7|, dimensional

vector space. Then the following set of vectors are orthonormal,

I Fmall ¢n .
o) () [BE ) (B e
07,1 FE[To—1] Xmg" ) jre[Tm—r] o fing Fing 7elr]

anQH q€(r]

The first three sets contain T — 7 vectors in total, and we choose them as x; for j € [N —7].

W 146
In addition, we can see that the columns of A and A are
wi W

- i
" AT @17
( wpqi ) = ( " N 4 ) for p,q € [r], and (B.37)
~Wpqf frely
" AT @17
( "o ) = ( (A ) for p,q € [r], (B.38)
Wpaf _f~p ® 1q

respectively. The 2r? vectors listed in expressions (B.37)-(B.38) are orthogonal to each other and
also orthogonal to the eigenvectors listed in expressions (B.35)-(B.36).

1 _1 1 _1
Let A= —D ;> Loy Dl — (=D 3 Lygmis Dyl — As). From expressions (B.31)-(B.38), we
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can see that the (N + T') r eigenvectors of A are given by

[y

€oj On,x1 [ESHIRE
0 , 122, A @17

G ST B A ST I B v RV U B
0T x1 OT x1 f‘”®17"

’ ’ 07, %1 P =g
OTm x1 OTm x1 O S [T] »DE [T]
j€[No—r],pelr] §'€[Nm—rl.pelr] Tox1
- q€[r],p€lr] : (B.39)

0N, x1 0N, x1 ONoxl
0 0 Np x1 N 17

Ny, X1 ®1;7 Nmx1 ®1;7 ||f77711qH . ®1;’ -q:? pT
Xoj 07, x1 (|72, ]] 72 —fp®1
QTT; x1 ?<qu/ H%i’q|’|’ n q€lr],pelr]
Jelforrhoelr JEtm=rlpel gelr)pelr]

and the corresponding eigenvalues are

1 for all 5,p, f;l(fg))Q for all j/, | 1 for all (p,q), | 2 for all (p,q),

((No—r)r times) (Np,—r times for each p) (r? times) (r? times) (B 40)
1 for all j,p Zﬁ\;"l(}\%)z for all 7/ | 1 for all (p,q) | O for all (p, q) .
((To—r)r times) (T —r times for each p) (r? times) (r? times)

That is, among the (N + T) r eigenvalues of A, (N, + T,)r of them are 1, 72 of them 2, r? of them

are 0, and the rest are also positive w.p.a.1.

Step (1.4). Now consider As. Given that ngquH = ||/ ‘wgq/\mH = H)‘nmq Wy, =
Amg ® 1 and wy, . = f, ® 17, we have
o o
qum mz)H )\n r
n ®1
JUN B -von A O O rom TR
O7,rx1 O7,rx1
|| )\'m” ‘I|| '
T s O
= ||l Al
||||):\%Q||” )\Zq 0N0><1
in 0 A" @17
N AT il | O et
BT e B I PO O
Xoall | g, 15 Tl ™ v
o fp
_ 07,1 [FERIREE _

The eigenvalues of A corresponding to the three vectors in the square brackets of the last displayed

line are 1, 1, and 2, respectively. After subtracting Agp, A*

3pq> Only these three eigenvalues are affected,

16



and they become the eigenvalues of

1 00
0 1 0 | —=0pgly| (B.41)
0 0 2
— [ £p A%l
where ¥,y = — H pH H)\’,;LQH . Obviously, the 3 x 1 vector that is orthogonal to both (0,0, 1)’
V2| £l A |

and ,, is an eigenvector of (B.41), and the corresponding eigenvalue is 1. The remaining two
eigenvectors of (B.41) should lie in the space orthogonal to this eigenvector, thus could be writ-

ten as linear combinations of (0,0, 1)" and 9,4, or (for simplicity) linear combinations of (0,0, 1)" and

(= [ £l 112 = | Fm ] A )/. Suppose v is an eigenvector of (B.41) and v = z(— || f1;
— I ]l | Mgl - 0)" +3(0,0,1)". Pre-multiplying vv by (B.41), we have

Ul I3l + 17507 XY + V2 [ gl IVgll) = e

2y = V2| £ HA ol a1 15l + 15 [l + 92 N | Xl = e

where ¢ represents the eigenvalue associated with the eigenvector vv. The solution of these two

equations are

o = LB PR (Ul D ‘“) SIPAREAR

f + (| AL, +1 f + (AL |”+1 "
Cpq2 H pH ! qH (H p“ ! H ) 2” pH H/\qu

_1 _1
Thus the three eigenvalues of (B.41) are (1, cpq1, ¢pg2). In summary, the eigenvalues of —D X Loy Dpil

are:

3’21(‘)%)2 for all 5’

(Nm—r times for each p)

Soive (M) for all j7

(T —r times for each p)

1 for all j,p
((No—r)rtimes)

Cpq2 Cpql
for each (p,q) for each (p,q)

1 for all (p,q) ‘ 0 for all (p,q)

(r2? times) (r2? times)

(B.42)
1 for all j,p

((To—r)rtimes)

For each (p,q), due to subtracting Agqugpq, the eigenvectors of the three bold blocks in expression
(B.42) are orthogonal rotations of the eigenvectors of the three bold blocks in expression (B.40). All
of the nonzero eigenvalues are positive and bounded away from zero w.p.a.l.

(IT) The staggered missing case.

Let N, and T, denote the cardinality of {i : d; = 1 for all ¢t € [T} and {t : dy = 1 for all i € [N]},
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respectively.

/
Ly - X wf ey (nes
¢ i<N, or t<T, 1T\ 172\

e\ 1Nep)
+ Zi>No and t>T, dit ( 11'{’ zfio ) ( 11T S f‘} ) ' (B.43)
If we throw away the entries of {(i,t) : i > N, and ¢t > T,} so that the data matrix becomes a block
missing matrix, —Lyg would be equal to the first term on the RHS. Since the second term on the
RHS of (B.43) is positive semi-definite and we have proved the result for the block missing case, this
case is also proved.
Step (2). Step (1) shows that all of the nonzero eigenvalues of —D;)\% LM)/D;)\% are positive and

bounded away from zero w.p.a.1l. From expression (B.39) we know that the eigenvectors correspond-

_1 _1 Al @17
: 2 : < _ 2 , 2 q p :
ing to the r* zero eigenvalues of D3 Lyy D,y are { —f” ol , D,q € [r]}, which are the
_1 o
columns of D, f2 WO, Thus if we define H, oo = Lyg —cD f/\D WOWO’ D, f2 D ]%/\, then all eigenvalues

1 1
of —Df)? H¢¢1Df>\2 are positive and bounded away from zero w.p.a.l. The rest of the proof is the
same as Step (2) of Lemma B.1 once we replace L¢¢/ by L¢¢/, DTN by D¢y and Dyt by Dyy.
Comblnlng the above results ylelds that ||(=D H(M)/D ) Y = 0,(1). Now, let Eyp =

1

2

—Df)\ H¢¢/Df)\ Noting that —DTNH¢¢/DTN DTNDfAHNTDf)\DTN, we have
_1 _1 _ _1 _1
O-min(_DT]%[H(bqb’DT]%[) > Omin (ENT) Umin(DT]%foADTK/)'

_1 _1
By Assumption 1, omin(DpyDprDpyy) is bounded away from zero w.p.a.1. This, in conjunction with
_1 _1
the above conclusion on Zy7, implies that omin(—Dp5H, ¢¢IDT]%,) is also bounded away from zero

1 1
w.p.a.1l. Thus ||(—DT]%H¢¢/DT]%,)_1|| =0,(1). m
Proof of Lemma B.2 for the simple case r = 1:

In this case, the above proof can be greatly simplified. Below we outline the key Steps (1.1)—(1.3).
Step (1.1). Note that —Ly = (=Lgy pur) = (—Lpg'mis)> Where

i IN X fO/fO )\OfO/
—L¢¢’full = fo/\Ol I x ICHE (B.44)
ONn,xN, ON, x N On, xT, ON, xTpm
ONpxNy  INg X LS | ONpxTs, Ao S
~L gy mis , (B.45)
07, %N, 07, % N,y O, <, 07, <13,
| 07, %N, foAm 07, xT,  I1y X A AD,
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Npp =N =Ny, Trp =T = To, AJ = (AL, A%,), A% = (AR 100 AN fO = (f2,..., f2) and
_1 _1
o= f%. 15 f2). In the following we shall calculate all eigenvalues of —D 7 X Lyy D I I
First, let f* = (Zr‘le(f?)Q)_%ff and A\ = (Zi]il(/\?y)_%/\? denote the normalized factors and
loadings, and let A} = (AT, .., AR), Am, = (AR 10 AR, A" = (A, f = (f1's o F1),
fon = (ff 15 f1) and f* = (f2', f). According to the definition of wy, at the beginning of
Appendix B, we have w?; = (A\Y, —f%) when r = 1. Similarly, let w}; = (A, —f™)". It is not
1 1 1 1
difficult to verify that wY; is orthogonal to both —D 2 Ly D3 and —D 2 Ly D32, and the
(i,t)th element of —\" f™ is —f/"AI'. Tt follows that

-1 1 [ an A\ In AT A A
ottt = () (50 ) = e () ()

_ [ In = A"\ ONxT ] _ [ YL EE OnxT ] (B.46)
Orx N Ip — frfm™ Orx N S |

where {§;, j € [N —1]} and A" together constitute an orthonormal basis for the N dimensional vector

space, and {x;, j € [T — 1]} and f" together constitutes an orthonormal basis for the T dimensional

vector space. How to choose {; and x; will be discussed later.

Step (1.2). Similarly, we also have

0 0 0 0 0 0 0 0
_1 _1 0 x fnfn AR 0 A {0 O
—D,L 'misD ;= e e = +As, (B.47
S\ TedmisT A 0 0 0 0 00 [0 0 3 (BAD)
0 ”)\"m/ 0 Ig, x)\fn')\fn 0 0 A
where the dimension of the zero matrices are self-evident and
)\n )\nl
A= Ing, < S = Il
N P NP
Ay = I, x AL — an 2 dm S
(RZ3InipE|
)\n
A3 = A311A3117 A311 — (01><Na7 ”an ||A ”7 1><To7 ”)\ || an”) (B48)

Similar to equation (B.46), let {&,,;, j € [Ny — 1]} and H—i% constitute an orthonormal basis for the
Ny, dimensional vector space, and {X,,;, j € [Tm — 1]} and ”—ﬁ% constitute an orthonormal basis for

the T}, dimensional vector space. Then we have

_ nl rn Nm—1 /
Tm—1
Ay = NN T XangXings (B.50)
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Step (1.3). Choose §,; such that {¢,;, j € [N, — 1]} and ”i—gH constitute an orthonormal basis

for the N, dimensional vector space. Then the following set of vectors are orthonormal,

An n n
’ )\ H n ’ n :
0Nt/ e,y Emg’ j'e[Nmfl] IA TR Am Am

The first three sets contain N — 1 vectors in total, and we choose them as &; for j € [N — 1].

(B.51)

Similarly, choose x,; such that {x,;, j € [To — 1]} and % constitute an orthonormal basis for the

T, dimensional vector space. Then the following set of vectors are orthonormal,

(Xoj ) ’<0Tox1) <||||JJC‘; 1o ),(f‘?)
OTmX]. jG[To—l] Xm]l jIG[Tm_l] ”fm |f fm

The first three sets contain 7' — 1 vectors in total, and we choose them as x; for j € [T —1].

_1 _1 _1
Let A= _Df)\2 L(;S(;S/fullDf)\z - (_Df)\z L(j)(j)’mis D

(B.52)

f/\_ — As). From expressions (B.46)-(B.52) we can
see that the N + T eigenvectors of A are given by

A7l
éoj ON,,><1 ||)‘\I§UL|T\Z
— %o n n
Omel fmj/ B >‘m A /\/5
07, %1 07, x1 07, x1 I
07, x1 07, x1 07, %1
JE[No—1] §'€[Nm—1]
On,x1 On, x1 On,x1 ’
ONm><1 ONm><1 Omel A" /\/§
I
Xoj 07, x1 ‘\‘\f%?HL o —fn
O, x1 Xinj' AR
JE[To—1] J'E€[Tm—1] "

and the corresponding eigenvalues are

1 for all j§
(Th—1 times)

(T —1 times)

Tforallj | 1—ff" forallj/, | 1|2
(No—1 times) (Nm—1 times)
1—NYA" for all 5/

1‘0'

Step (1.4). Now consider As. From equation (B.48), it is not difficult to verify that

Al yn
H/\szbxl\l")\\l On,x1 N
A £ | Onxa Az
Az = | f 1A L I T V2| V2
0T0><1 Hfm” Hfj;L”f %
0Tm><1 ”]fclnHl fTL

The eigenvalues of A corresponding to the three vectors in the square brackets are 1,1 and 2, respec-



tively. After subtracting Asi1 A%, only these three eigenvalues are affected, and they become the

eigenvalues of

100
010 | -0, (B.55)
00 2
—Ag n n
— Rk il
where ¥ = || f5.[ | A% ] _\‘ljjfzi'\\ = — £ . Obviously, the 3 x 1 vector that is

V2 V2 £ I

orthogonal to both (0,0,1)" and ¢ is an eigenvector of (B.55), and the corresponding eigenvalue is
1. The remaining two eigenvectors of (B.55) should lie in the space orthogonal to this eigenvector,

thus could be written as linear combinations of (0,0, 1)" and ¥, or (for simplicity) linear combinations

of (0,0,1) and (= [|F2I A2, = [IF21 1A ], 0)'. Suppose vo is an eigenvector of (B.55) and vv =
(= 1A IS = 1A HIARN S 0)" +5(0,0,1)". Pre-multiplying vv by (B.55), we have
= (I FmlZ INGIZ A+ ISP UML) + V2RI INGIT = e,
2y — V2 Fn N LAl 1IN+ P NI + g V2RI INGIT = ey,

where ¢ represents the eigenvalue of vv. The solution of these two equations are

C1

C2

2 2
™+ A6l +1

2

2 2
[ | S (e

2

2
L2 + I + 1 2|1 yn)|2
( Y = 27217 A1

2

2
21 + I + 1 n
( = 2|\ f5 1 X517

1 1
Thus the three eigenvalues of (B.55) are (1,¢1,c2). In sum, the eigenvalues of —D 2 Ly D, are:

Lforallj | 1— fMfh forall j/, | ca | ¢
(No—1 times) (N —1 times) (B56)

1forallj | 1—AYA" for all j/
(To—1 times) (T —1 times)

1‘0

Due to subtracting Asi1 A%, the eigenvectors of the three bold blocks in expression (B.56) are
orthogonal rotations of the eigenvectors of the three bold blocks in expression (B.54). All of the

nonzero eigenvalues are positive and bounded away from zero w.p.a.1. ®

Lemma B.3 Suppose that the conditions in Theorem 4.1 hold. Then as (N,T) — oo, both %RA
. . . 2 . 2

ond Je iy are Oy =X |7 = o+ F7= 2+ /7 |3 =27

Proof. First note that (1) dx,, Lyy =0, (2) the t-th block of O, Ly is —dit(Ai1} + 17 A}) where 17
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denotes the r x 1 vector with the g-th element being 1 and all the other elements being zeros, (3) the
(4,t)th block of Oy, Ly is —di fi17/, and the (g, s)-th blocks are zeros if j # 4, and (4) the (4,%)th
block of Oy, Jxy is —dit fiqlr, and the (j, s)th blocks are zeros if j # i. By (B.6)-(B.8), we have

Z 1 A ZT 1 ft2 _ _ 8 _
D iy U ZN e N 8Dy (Ligwgy + weqlig) Dy + NAiqDN%r(IN+T ® tg),

Do nig Zp 1Zq>p Zt lftpftq = 0,
gt/ iq Zp:1 pr ZL Aiphig)?] = 2(Zp PRU Zm& ity + Z upq

where 1;, is an Nr +T'r dimensional vector with the g-th element in the i-th block being one and all

the other elements being zero. Let R, and Ry,  denote the g-th element of Ry, and Ry,, respectively.
It follows that

Ry, = (&= ¢°)0x,0,5Q(5)(6 — ")
= = i = XY G+ o)1) (o~ 1)
Sl YN f?)
T iy = N S Nal) g =N = 7 S Fual) i — )
SNl S0 (G - A;?q) . Zt:1<ftq 1
Sl X iy ) (g - X2

cr . N . N .
= 2y Cip = XD Aja(5)Ngp = AGp) + D Ain(5)(Nig — AJy)]
L1i + L2i + Pli + P2i + P3i 4 P4i, (B.57)

where f(s) = O+ s(f — f°) and A(s) = A% + s(A — \0). It’s easy to see

L] < |7 -1 (B.58)
L2l < Minl |- (53.59)
PL| < (5 NG A= + = 151 |- 7)) (8.60)
P2l < MTIN A2+ - 2, (B.61)
P3i| < M% ()] S\—AO‘Z, (B.62)
\P4i| < A= 2 A)] HX—)\OH. (B.63)
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Since sup Il fe(s) Hft ‘+ Hft fo H and sup INi(s)| < H)\O
Theorem 4.1 implies that sup ||f(s)|| = p(\/_) and sup [|A(9)| = p(\/_), it follows that
0<s<1 0<s<1

9, Assumption 1 and

IRl = |-

O/ |-+ =2+ o - o+ 5 3 -0 oo
IRl = 0,/ HA 7= s+ -+ a2 (B.69

By symmetric arguments, we also have

it = [ ouo ] 2 - o o - o o
N ] VR e A VR ) oo

This completes the proof of the lemma. m

Proof of Theorem 4.2.
Noting that 94,P(\, f°) = 0, we can write S, = 03Q (gbo) = (S&l,...,S&N,S}I, ...,S}T)’, where
Sy, = S8 dipwirf? and Sy, = SN | divyA). Then

2

2 2
1 N ZT_ d't’l)'tfo T Z]\i d't’l)‘t)\(-]
2 _ t=1 "t St 3—=1 LMl -

'DTNS¢ =D s g | T > N = Op(N+T), (B.68)
where the second equality holds by Assumption 5 and Markov and Jensen inequalities. It follows
that

L(S\ — )\0) 1 1 1
-3 =3 -1 =3 -1
( \/1N F_ 10 = Dyi(o - ¢°) = _DN%H¢¢'S¢ - DN%H(M;'R(#
77 =17
1 1
_1 1 .D.2§ 1 1 .D.2R
_ D 2H /D2_1 TN ¢_|__D 2 H /D2_1 TN
(=D Hyy Dry) NT (=DpjHey Dryy) JNT
1 2
= Op(—)+ Hf fOH + = H)\—)\OH ) (B.69)
CNT

where the last equality holds by (B.68) and Lemmas B.1, B.2 and B.3. By Theorem 4.1, Hj\ —
Al = Op(4 /%) and ||f — [0 = Op(4/ c]{T). Plugging this back into equation (B.69) yields that
TIA =X = 0p(G) and =1 = fOll = Op(57)- W

C Proof of Theorem 4.3

To prove Theorem 4.3, we need Lemmas C.1-C.3 below.
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Lemma C.1 Suppose that the conditions in Theorem 4.2 hold. Then as (N,T) — oo,
(CNT) +0 ( NT) and ||Ry| = OP(T2_\/N);

ENT
(ii) 1Ry, = || fi = 12| On(E5) + Op(ED) and || Byl| = 0,(25T).
N\ = 0. (YN 0 ~T '
Proof. By Theorem 4.2, we have ||\ — X°|| = O,(XX) and ||f — f°|| = O,(XL). Plugging these

CNT CNT

back into (B.64)-(B.67), we prove the above lemma. =

Lemma C.2 Suppose that Assumptions 1, 2 and 4(i) hold. Then as (N,T) — oo,

(i) [[URNi]] = Op(1) and | UR]| = Op(VN):

(ii) (L]l = Op() and |3y || = Op(7);

(ii1) HHM, = Op(%) and HHff, = Op(%);

(iv) || [Hxpli]| = Op(VT) and ||Hyp|| = Op(VNT).

Proof. (i) The results are obvious by noting that ||A?|| < M under Assumption 1(ii).
(ii) For the random missing case, since Eg(d;z) > ¢ > 0 for all ¢ and ¢t by Assumption 2(i),
min & pmin (7 ST By(dir) f2£2) is bounded away from zero in probability by Assumption 1(i). (B.17)
(2

1 1
= Op(]\\;%) = 0p(1) when N—\/% — 0. It follows that

1 1 -
Gz ™| = mimowr 3, dest )

. 1 T 1 _
1/ [milnamin(f thl B (dit) 1) — HT(LAX — L)

implies H%(LM/ — L)

IN

} = 0,(1).

For the block missing/staggered missing/mixed frequency case, the result follows from Assumptions
1 and 2(ii).

(iii) By equations (B.9)—-(B.10), Hyy = Ly — %UEUE’. Then by Woodbury matrix identity (see,
e.g., Fact 6.4.31 in Bernstein (2005) or p.309 in Seber (2008)),

H ), =L\ — L U~ ];I 2 4+ UYL L UR)TTUY L (C.1)
Since Uf\)’ L;;, U 9\ is negative definite, we have
H[ ];I 2+ UYL, U™ % (C.2)
Then by (i)-(ii), we have
< I+ N ORI | =Sk + UY TR
= 0y(z) + op%)op(mop(%) = Oy



The second part can be proved analogously.

(iv) By equations (B.9)-(B.10), Hypr = Lxp + Jxp — CUQUJQ’. Noting that the (,¢)th block
of Ly is ~dufOAY, [IEaphll < I = Op(VT) and IEapll < NI = Op(V/NT) by
Assumption 1. Similarly to Ly, we also have ||[USU'];]| = O,(VT) and U0 = O,(V'NT).
Noting that the (¢,t)th block of Jys is djvid,, we have ||[Jyp]il| < (r P 1%&%&)2 = 0,(VT) and
[ ] < PN, ST d202)2 = O,(VNT) by Assumption 4(i). m

Lemma C.3 Suppose that Assumptions 1, 2 and 6 hold. Then as (N,T) — oo,

(i) U H LS| = Op(\ /5 + ) and |09 HF L8] = 00\ /% + )

(it) HLf/\’ /\,\’SAH— \/_+\/— ) and HL)‘leff'SfH_ \/7+\/_)
(i) HJf/\’ )\/\,S,\H_ \/7+\/— ) and HJ,\f/Hff,SfH_ \/_4_\/_)
() HHf,\’HM/SAH \/_+\/— ) and HH,\f/ ff’SfH_ \/74_\/_)
(0) [ oS30l = Op(\ /5 + 50 and | [Hrp H S04 = 00/F + %)

Proof. Recall that Sy = (5},,...,5),) and Sy = (S},...,S},)", where S, = ST digvi f2 and
Sy, = Zf\il ditvig)Y. In the following, we shall only prove the first half of parts (i)—(v) as the second
half follows from symmetry.

(i) Note that UYH LS\ = UYL

A\ S)\ USIL
We first show

NY WU =2 L + UYL U TUY LSy by (C.1).

N N
ozt = 0,0/ X + ). ©3)

U/(\)’ LM,S \ is an r2-dimensional vector. From the definition of Uf\), we need to show that for any

pand ¢, SN A\ ipl (ZtT Vi fOFON TS digvie ) s »(1/F + &), This follows because by
Assumptions 5, 6(1) and 6(iii),

N T T B
Hzi—l ZH(ZH dif{ 1) FON divie
- - a F

1 N T —1 p0+07 7. ... N T—1 -1 1 T 0O/ 7 .
H T Zizl =1 AiF Je i digvie h + Z.zl(Az‘F B AiF ) T thl fe A7 digvit .
1/2
N N 1 12 1/2 N 1 T 0 0 2
oy S+ {3 1z - gt} S |3 o st

= Op(\/g) + Op(\/g)()p( %) = Op(\/g + %)a (C.4)

where S%, || 45} — AZH|* < S (| Air — Aup| | sup, || 45| sup; | 4| = Op(5). Then

IN

IN

HI

JURH S < UL+ ORI (125

AN AN )\X |U§’L S/\H

H UYL} N
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= Op(

Si=

)+ 0,M0,210s 0, X + Xy — 0,/ X+ X,

where the first equality holds by (C.3), (C.2), and Lemma C.2(i)—(ii).
)\)\,S)\ — Lf)\/L)\)\’SA Lf)\/L)\)\’UX( I 2+U)\0/L
We first show that HLfA’L/\XS/\H = Op(V'N + \/—) Note that

(ii) Note that L sy LU IUQ’LM/SA by (C.1).

AN
N T B T
[LivLiuSis = 21:1 dz‘s)\?fg/(ztilditf? ) 1(27&71 dipvin f7)
N T T
[fsmzi:l Zt:l(ztzl ditfff) ) 1dtvztft )\O,dls = fO,ZZ_ Zt 1 gzt is) s

where &;; = divir [P )Y, We make the following decomposition.

% Zj\;l Zj 1 flt is = T Z Zt 1{A gltd” + (AzFl ;Fl) gitdis} = Iis + Ios,

Under Assumption 1 that HLf)\/L;AI,S)\HQ < M? Zle Zzzl 1)1 = Zle I;. By Assumption 6(i)
2
and (iii) and the CS inequality, we have E || ;|| = Zstl E ‘% Zf\il Zthl Ajp€udis|| = O(N), and

T N _ - 1 9
I = Z Zi:l (Az;_Az;) Z gzt is
s=1
N i azems=N |1 =T 2 N2
= Zi:IHAiF_AiFH lei_l thzlgitdis = O0(=)- (C.5)
s=
Then HLf)\’L)\/\/S)\H - p(\/ﬁ+ %) It follows that
HLf)\/H)\)\/S)\H < HLfXL)\XS)‘H—i_HLfX HL)\)\, ‘UAH H UQ’L)\X |USIL)\)\/S)\H

— 0,(VN +-=) + O,(VET)O,()0,(V)O (z)o ( EJrﬂ)

P JT P p(7)Yp NN T T F
N

p(\/_+ \/T)’

where the first equality follows from (C.2), (C.3), Lemma C.2(i)-(ii), and the fact that ||L;y
O,(V/NT). In addition, it is easy to see that [Lf/\/L;/\l,S)\]S = Op( \/E +5)

(iif) Note that Jyy Hyb S = Jya LihSa—Jpy Ly LU (= 2 To + UYL U~ UV LS5 by (C.1).
We first show that HJf/\/L/\)\,SAH = \/_+ \/— Note that

[JfXLA)\’SA] - 21 1 Zt 1 Z ztft ) ldisvisditvitfto
T
= =13 . 7., £0
o T Zizl t=1 AzF dZSUZSdztvztft
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= 7 Zl L Zt 1{ it — BErits)] + A B(Eriss)
(Al; - iF )[glits - (glits)] (A ; A ) (glzts)}
= I+ 1los+ I35 + 11y.

where recall that &0, = disvisdipvief. Then ||y Ly Sal|” <43, ST (1|12 = 4L, 11, By

Assumption 6(i)—(ii) and the CS inequality, we have

2

T
Blinl = B2 3, Y, Al - Bl —ow)
s=1
1 <N T 2 N2
I, = ?ZizlztzlA;ﬁ}E(flits)] _0(7)’
N o 2 N2
II3 < Zi:l HAZ}:’ H Zs lzz 1 Z flzts_E(glits)] _O(
N B T N |1 «<T 2 N2
Iy < ZizluAiFl_AiFluzzs:lZi:1 thﬂE(g“tS) :O(ﬁ)-
Then HJf)\/LM,SAH— \/_+\/—) Then
ISy < petksall+ 1w 12 WO (Gt — R 23080 N5

= Op(\/N)+0p(m)0p(l)0p(m)op(£)o (\/NJr N \/—Jr

T N T T

by (C.2), (C.3), Lemma C.2(i)—(ii), and the fact that H‘Jf/\’

see that [JfXL;/\l,SA]S =0,(/F+ %)
(iv) Noting Hyy = Ly + Jpy — CUJQU?\I, we have by the results in parts (i)-(iii) that

1Hp H S < Lo HooSall + [ px Hy Sl + e [JUF [ IUX Hy i
= (x/_+¢_)+o(x/_+¢_)+op(ﬁ)op(\/¥+%)

= O,(VN + ﬁ)‘

(v) This part is implicitly proved in parts (i)—(iv). =

)\)\’

Proof for Theorem 4.3. We focus on the analysis of S\i—)\?. Noting that (ES—gbO =
by (3.1), we have

¢¢IS¢

j‘i - )‘? = [ ¢¢'S¢] [H;;Rdiv

where recall that [A]; denotes the ith block of vector A (of size r x 1).
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S

= Op(VNT). In addition, it is easy to

—1
H¢¢,R¢

(C.6)



First, we study [H |, R4);. The upper-left block of H 7 is [Hyy — Hyp H 7 f,H )7t the upper-

¢¢’ ¢¢’
I'ight block is _[H)\X — HAf'Hff’Hf)\'] H/\f/H Ff and
—1 1 -1
[Hyy — Hyp Hy Hpy )™ = Hy+ HyVHy g [y — Hpy Hy L Hyp ) ™ H oy HL (C.7)
It follows that
[H;;Rdi = | ,\A'R/\] [ A,\'H/\f’(Hff’ Hf/\’H,\,\'HAf/) HfXH,\XRA]
[H)\)\’H/\f/Hff’Rf] [H)\)\/H)\f’(Hff’ Hf/\/H)\)\,H/\f/) Hf)\'H)\)\’H)\f’Hff’Rf]
= R1i+ R2¢ — R3i1 — R4a. (C.8)

We study R1q, ..., R47 in turn.
(R1i) By (C.1) we have [H, ), Ryl = [Ly \]iRx, — [LyJilUNi(= 2512 + UYL UD)TLUY LT Ry
By Lemmas C.1(i) and C.2(ii),

{IL5%

( )-

!
Ji
AN CNT

= 0p(—) |3

CNT

y (C.2), Lemma C.1(i) and Lemma C.2(i)-(ii),

N
|08 S + UYL O O
1 T 1 TVN 1
= Op(f)Op(l)Op(N)Op(‘/N)Op(f)Op(%) = Op(%)-
- 1 _ 0 1
It follows that R1i = Op(5 =) ||Ai — A; (C?VT)'
(R2i) By (C.1) we have
R2i = [Ly LilHapli(Hyp — HyyHy Hyp) Hyy Hy G Ry
N
[L)\)\/] [U)\] [ TI2 +U/(\),L)\)\/U)\] 1U3,L)\)\’H>\f’(Hff' Hf/\’H)\)\’H)\f') HfXH)\)\'RA
= R21: — R22:.

11 _1 _1
Note that (Hp — Hf/\/H/\)\,HAf/) equals the lower-right block of D2 (D% Hyy Dy %) "Dy k. By

Lemmas B.1 and B.2,
1

|(Hyp — Hyyv Hy S Hap) 7| = Op()- (C.9)
This together with (C.2), Lemma C.2 and Lemma C.1(i) implies that
, 1 1 = 1. TVN 1
R2li - = Op(_)op<ﬁ)0p(_)op( NT)Op()O0p(—5—) = Op(—5—),
T N T X N



R22i = 0p<%>op<1>0p<§>op<W>0p<%>op<¢ﬁ>op<%>op<me(;)op{g)
= OP(CQL)
NT

It follows that R2i = Op(—).
NT
(R3i) The analysis is similar to that of R1i and the main difference is that R) is replaced by

Hyp Hpj Ry, Part (R1i) uses || Ry, || = ||Ai = || Op(z5) + O, ( —) and | Ry|| = Op(ZYN). Here by
NT CNT
Lemma C.2(iii)-(iv) and Lemma C.1(ii), we have
NVT T
[t Ep el < el |78 1741 = 00(VTI0W(5)00(550) = Oyl ),
A CNT
N\/_ T\/_
||| < (Eapl B2 175 = OV NT)ON (5100 (—) = O
N CNT CNT
Thus R3i = | /\/\,H)\f/ ff,Rf]z = Op( NT)

(R4i) The analysis is similar to that of R2:, and the main difference is that R} is replaced by
H,\f/Hff,Rf Part (R2i) uses ||R,| = (I;QN/TN), and here we use ’HAfr ff,RfH = T‘/:]Fv) Then
R4i is also Op(%).

Combining the above results for R1i, ..., R4, we have

“ 1
H . Ryli = O, Ai = A —)- C.10
[ b ¢] (CNT) i p(C?VT) ( )
Now, we study [H;J,Sdi. As in (C.8), we have
-1
(H 5 Sol = [HywSals + [Hy g Hpr (Hypr = Hpyo Hy Hy g )™ Hopy H, S5
—[H 0 Hy g H i Syl — [H G Hgr (Hp g — Hpy HG H ) ™ H o H Hopr H Syl
= S1i+ S2 — S3i— S4i (C.11)
We study S1t, ..., 547 in turn.
(S1i) By (C.1) we have
N 1
[ M,S)\] (L M,]ZS [LM,] Ui~ I,,z +UY LM,U/\] Uy AXSA (C.12)

By (C.2), (C.3) and Lemma C.2(i)-(ii),

S

N
ettt St + v L Og OR L
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1 T N N 1 1
= Op(7)0p(M)0(F)0(\| 7 + ) = Op(ﬁ +7)-
It follows that S1i = [L;}]iSx, + O (\/—_ + 7).
(S2i) By (C.1) we have
S22 = [L)\X] [H)\fl] (Hff/ Hf/\/H)\)\’H)‘fI) Hf)\IHA)\,S)\
N
[L)\)\/] [U)\] [ I2 +Ug,L)\)\/U)\] 1U3/L)\)\’H)\f'(Hff’ Hf/\'H)\)\’HAf') Hf)\'H)\XSA
= S21i — S22i. (C.13)
By (C.9), (C.2), Lemma C.2, and Lemma C.3(iv),
. 1 1 N 1 1
S2li = Op(T)Op(\/T)Op(N)Op(\/]V+ ﬁ) = Op(ﬁ + T)’
. 1 T 1 1 N
522 = Oy(F)0N D0, OHVRIONFIO,(VETION IO,V + )
1 1
p(m T)
Then S2i = Op(ﬁ +2).
(S3i) As in part (S1i), we have
[H)\)\/H)\f/ ff/Sf]
N
= [LA,\/] [H/\f’Hff’Sf] [L ,\x] [U/\] [~ TIQ +U,(\)ILM/U,\] lUg’L,\xH/\f’ ff’Sf (C.14)

The difference is that Sy is replaced by Hyp H, f,S s and Sy, is replaced by [Hyp H,; f,S £li. Part (S1i)
uses ||UY )\)\/S)‘H = O,(1/ZF + &) whereas here by Lemmas C.2(i)-(ii) and C.3(iv), we have

IN

IR 123

AN AN ff

= OVRIOUFIONT+ =) = op<\/¥ +1).

In addition, by Lemma C.2(ii) and Lemma C.3(v),

|oy Lt H LS| |t sy

(L3 il g ff’Sf]Z = Op( )Op(\/%“‘ %) = Op(\/% + %).

Then by the above results, (C.2), and Lemma C.2(i)—(ii),

H)\f/

il

Issil < i Ll

N
[l + UYLV UR

0
1% ‘UA'LM'HV’ HypSy H
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1 1 1 T N 1 1
= Op(ﬁ + N) + Op(T)Op(l)Op(N)Op(\/; +1) = Op(ﬁ + N)'

(S4i) The analysis is similar to that in part (S2i). The main difference is that S is replaced

by H) ff’Sf Part (S2i) uses HHfA’H/\XS/\H = O0,(VN + \/—) Here, by Lemma C.2(iii)-(iv) and
Lemma C.3(iv),
—1
HHfA'HAA'HAf/Hff’SfH < (=g [[H HHAf'Hff’SfH

:(Mﬁ@%%mwi%%FQWRwﬁ

With this change, we can follow the analysis of S2¢ and showing that S4¢ = Op(\/% + %)
Combining the above results for S1i, ..., .54¢ yields

1 1 1

[ ¢¢,S¢] [Liv]iSx + Op (\/W + ?). (C.15)
This, in conjunction with (C.6) and (C.10), implies that
Ji = A0 = ~[L)i55, + 0p(—) [A (). (C-16)
CNT NT
Since O ( =) Ai — A (|| X ) and ||[L /\A’ 1iSx, Op(ﬁ),we have ||\, — XV = Op(#)%—
OP(CZ_)‘ Plug this back, we have
NT
S = AD = (L7380, + Op—m—) + Oy 5—) = —[L1)iSh, + Opl5—).
i — A / )\ — / )\
' A VTent Krr M Rt

By Assumption 6(iv), we have —T[L)_\;\‘,]i 2wt and %S&, <, N(0,9;7). Thus if = T3 0, we have

NT

A 1 VT _ _
VIO =X = (3, dudf? Zt y diefvi + Op(G) 5 NO S sy,

The limit distributions of the estimated factors follow from symmetric arguments. In particular,
we have ft — 0 =—[L;p)eSy +0 p(z—) and VN(fe = ) = [§ ity dieXIAYT ok S0 dieAoie +
Op(?) —> N(O E QtAEtA) |

D Proof of Theorem 5.1

We shall only prove (A — A%a = Op(czi) as the other claim follows by symmetric arguments. By
(3.1) we have

~

(A — A% a = — ZN [ ¢¢,S¢]Zal — Z nl ¢¢,R¢]1a1
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It suffices to study ZZ 1[H¢¢,S¢]zal and ZZ 1[H¢¢,R¢]ZaZ

First, we show ZZ 1[H¢¢,S¢]zal = Op(‘/—\/;). By (C.11) we have

~1
[H¢¢/S¢]i = | )\)\/Sz\] [ )\)\/H)\f’(Hff’ Hf)\’H)\)\'HAf’) HfXH)\)\'SA]
[HA)\/HX]” ff’Sf] [ )\)\/H)\f’(Hff’ Hf)\/H)\XHAf/) Hf)\'HA)\’HAf/Hff’Sf]
—  Sli+ 52— §3i — S4i. (D.1)

We study Zf\il S1i-ai, ..., Zf\il S4i - a; in turn.

(S1i) By (C.12), we have S1i = [L i8Sy, — [Ly iUV~ 2512 + UYL L UYWUY LSy =

[L4]iSy, — S12i. Then

_ 1 -
ZN (L AA’] Syai = sz\il szl(zzll disfso 0,) ldisvisfgai = ?21\11 ZZ:lAz‘FldiSUisfsoai

= Zz—l et Aipais + Zz 1 et (A = Af)€as = Iy + 1T o,

By Assumption 7(i), 111 ; = Z¢ 1 ZS 1 ;Flﬁa,is = Op(“/—g). By Assumptions 6(i) and 5(i)
NG 1 2 V2 VE\ . VN
N < _
(11 ] < {Zizl 147 — A7 | } {Zivﬂ TZSL €a,is } =0p (ﬁ) Op(ﬁ)~

Then SN [L7L; Sy,ai = O VN | Ny For S12i, we have by (C.2), (C.3), and Lemmas C.2(i)—(ii
=112\ P\/T T
and C.3(i),
SN IS12i)? = LUd[— NI + UYL LU tuYLLs
i=1 LivUx T AN YA A HAN A
< I8l |-t + OR RO g sl
1 T IN N 1 VN
= Op(f)Op(\/N)O (N)Op( 7T 7) = Op(ﬁ + T)-

Then HZL S12ia; Zi\;l 15124 % ||a|| = Op(—\/g + &) by the CS inequality. It follows that
N .
Yl S10ai = O + )
(S2i) By (C.13) we have

S2 = [LyyllHapli(Hppr — Hyy Hy Hyp) ™ Hpy Hy S
N
— Ly ilUNi[— T12+U£’LM,UA] YOV L L Hyp (Hpp — Hyy H L Hyp )™ Hpy H, LSy

= 521+ 522i.
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By Lemmas C.2 and C.3(iv), (C.2), and (C.9), we have

SE IS = OyF)0VITION IO VN + ) = Oyl + @
. 1 T 1 N
Y 11522 = Op(T)Op(\/N)Op(ﬁ)Op(\/N)Op(f)Op(\/W)Op( )Op(\/_ ﬁ)
= Op(% + \/_1]7)
It follows that || S22, S2ias | < (/X 182142 + /S, 115220 flall = Oy + ).
(S3i) By (C.14) we have
[H)\A’H)\f'Hff’Sf] = [L)\)\'] [HAf’ ff’Sf] [ )\,\/] [U)\] [ ];I2+U/(\)/L>\)JU)\] 1Ug,L>\/\/H)\f’ ff/

= 531 — S532.

Compared to part (S1i), the difference is that Sy is replaced by H) f/H]?fl, Sy and S, is replaced by
[H)\f/Hff,Sf] By Lemma C.2(ii) and Lemma C.3(iv),

VL lIs3til? = ||z,

By (C.2), and Lemmas C.2(i)-(ii) and C.3(iv), we have

| Fs H 5| = 0p )0, (VT + =) = 0y

N
U)\[ T[T2+U L)\)\/
N

T

S 5320 = 'L UO YL

AN AA'HAf’Hff’SfH

IA

[ 2 P 50 s 5

AN ‘HAf/Hff'SfH

1
T2

AN

= 0 >0p<N>op<N>0p<ﬁ =) = Oy + —=).

VN VN VT
< (YN, 183142 + /S 11532il) llal] = 0, +1).

(S4i) The analysis is similar to case of part (S2i). The difference is that Sy is replaced by
H/\f/Hff,Sf Part (S2i) uses HHf/\’H,\XSAH = O0,(V'N + %) Now, by Lemma C.2(ii) and (iv) and

Lemma C.3(iv),

It follows that szj\i 1 S3ia;

— 1 T
= 0,(VN +VT).
Then we also have HZf\Ll S4i-a;|| = Op(\/—g + 1). In sum, we have ZZ 1[lﬁf¢¢,k5*¢]16LZ =0 (‘/—\/j

F+1).
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Now, we consider ZN " Ry);a;. Note that

A ¢¢’

< \/211 H R

Lol R
H¢¢'DTJ%) 'DrE Ry

HZZ 1 ¢¢’R¢]Za%

=< Jel H’ H¢¢>’DTN) HDTNR¢H
- op<ﬁ>op<1>0p<g>=op<%>, (D.2)

by Lemmas B.1, B.2 and B.3. It follows that (A — A%a = £0,(¥Z + ¥ +1+ ) = 0,(5). =
NT NT

E Proof of Proposition 5.1

Proof of Proposition 5.1. We focus on the asymptotic distribution of 7.; — 7.; as the asymptotic
distribution of 7;. — 7;. follows by analogous arguments.

Noting that 74 — 74 = —/,(8 — 8°) — (fIAi — fYA)) + &4, we have

N A A
Fo-Te = —EZ aiwy(B = ) —Zizl ai(hi = ) fi
N
0
_% Zizl a X' (fr— 17) + % Zi:l aiit

= A — Do —Asyp+ Ayy. (E.1)

: N N N 2
Noting that || So0%; asf,[| < aa%(Zizla?)(Zizl lziell*) = /572 i lzall® = Op (1), [Are] <
O, (1) HB—BOH = P(c2 ) by Assumption 8(i)—(ii). By Theorem 5.1(i) and Assumption 8(i), |Ag;| =
NT
TIGOP(CQL) = Op(c%). It is easy to check that given the fast convergence rate of 3, the estimators
NT NT

ft and )\, in Step 2 of Algorithm 5.1 share the same asymptotic properties as stated in Theorem 4.3.

By the proof of Theorem 4.3, we now have

1 N VN
VN(f, - ZthO)\O’ 7 S da azt+0(—)iN(02 10T,

CNT

By Assumption 7 with v;; replaced by e, ﬁ Zfil ;i 4, N(0, Q). Let Cop = Tla Zfil ai)\?.
Then by the Cramér-Wold device and Slutsky theorem, we have

1 N I[N 1 N
/NT /A~ _ } : 04y0r1— E : 10 E o
N(T.t — T.t) = dzt)\ )\ N1/2 i1 dzt)\i Eit + a \/% i1 a;E;t + op (1)

_) N(()? pth—woo-NTt)’

where a?\,” =CI QtAE CaA+ 2o Qq +2C7 tAlcha fvj IE(ditAgeitejtaj). [ |

34



References

[1] Bernstein, D.S., 2005. Matrix Mathematics: Theory, Facts, and Formulas with Application to

Linear Systems Theory. Princeton University Press, New Jersey.

[2] Horn, R.A. and Johnson, C. R., 1991. Topics in Matrix Analysis. Cambridge University Press,
Cambridge.

[3] Seber, G.A.F., 2008. A Matrix Handbook for Statisticians. John Wiley & Sons, New Jersey.

[4] Wang, F., 2022. Maximum Likelihood Estimation and Inference for High Dimensional Generalized

Factor Models with Application to Factor-Augmented Regressions. Journal of Econometrics 229,

180-200.

[5] Yu, Y., Wang, T., and Samworth, R.J., 2015. A Useful Variant of the Davis-Kahan Theorem for
Statisticians. Biometrika 102, 315-323.

35



