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1 Introduction

Economists have long been interested in understanding the implications of economic pro-

duction on the natural environment.1 One well-known concept is production externality, the

market failure associated with the unpriced damage caused by production byproducts, such

as air and water pollution. Empirical research has centered on how these externalities affect

various aspects of human well-being – such as the causal effect of industrial pollution on

human health – which has been instrumental in shaping production and regulatory policies

over recent decades (e.g., Landrigan et al., 2018).

Humans are only one of the many species that may be affected by production exter-

nalities. Pollution and habitat destruction can disrupt a wide range of wildlife (Foster and

Rosenzweig, 2003; Polasky et al., 2005; Frank and Schlenker, 2016; Jayachandran et al.,

2017), diminishing their ability to provide ecosystem services (Tilman et al., 1996; Cotting-

ham et al., 2001; Cardinale et al., 2012). These services not only have ecological value – such

as increasing the resilience of ecosystems to shocks – but many also ultimately contribute

to human prosperity. For example, ecosystem diversity improves agricultural production

(Worm et al., 2006; Dainese et al., 2019), mitigates income shocks from natural disasters

(Noack et al., 2019), supports drug discovery (Simpson et al., 1996; Rausser and Small,

2000; Costello and Ward, 2006), and provides non-market and non-use values (Loomis and

White, 1996; Kolstoe and Cameron, 2017). This coupling between the economy and ecosys-

tems is becoming increasingly evident, and how to systematically monitor and analyze this

interrelationship – as well as incorporate it into sustainable development and macroeconomic

decision making – is a crucial current policy discussion.2

This paper aims to study the external effects of economic production on the ecosystem.

A major obstacle hindering empirical progress by economists has been the lack of large-

scale data on species observations (Geijzendorffer et al., 2016; König et al., 2019). Existing

datasets commonly provide only cross-sectional information on the geographic extent of

species, such as the Red List of Threatened Species (IUCN, 2021), or panel data for only

a single taxonomic class, such as the North American Breeding Bird Survey (USGS, 2014).

These limitations make it difficult to study the link between the economy and the ecosystem

1Economists have had early and sustained interest in understanding the value of ecosystems and their
interaction with economic prosperity (e.g., Weitzman, 1992, 1998; Arrow et al., 1995; Brown Jr and Shogren,
1998; Fullerton and Stavins, 1998; Heal, 2000; Brock and Xepapadeas, 2003). This early body of work was
followed by a considerable amount of applied research in the field of environmental and resource economics
(Brock and Taylor, 2005; Ando and Langpap, 2018; Dasgupta, 2021).

2For a recent discussion, see Federal Register 2023-01608 “National Strategy to Develop Statistics for
Environmental-Economic Decisions.” https://www.whitehouse.gov/wp-content/uploads/2023/01/Natu

ral-Capital-Accounting-Strategy-final.pdf

1

https://www.whitehouse.gov/wp-content/uploads/2023/01/Natural-Capital-Accounting-Strategy-final.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/01/Natural-Capital-Accounting-Strategy-final.pdf


at a broad scale. We make progress by introducing a novel database that compiles hundreds

of individual ecological studies that maintain longitudinal information on the counts or

biomass of relevant species (BioTIME: Dornelas et al., 2018; Blowes et al., 2019), which

lets us construct widely-used metrics for capturing changes in the ecosystem. These studies

– many spanning several decades – are consistent in their sampling protocols within each

sampling location over time (what ecologists call “assemblage time series”), making the

year-over-year variation in sampling outcomes likely to reflect genuine changes in underlying

ecosystem conditions. In total, the database contains millions of records of species counts at

over 15,000 different sampling locations, providing significant coverage of various taxonomic

classes. This includes 80 percent of the known bird species, 40 percent of mammals, 30

percent of amphibians, and 25 percent of freshwater fish, among others.

Our analysis consists of five main elements.

Measurement. We use the BioTIME database to generate three sets of measures that

enable us to quantify changes in ecosystem conditions over time across various locations

spanning the past 50 years: (1) abundance, which captures the total quantity of individuals

observed at a given location in a given year; (2) richness, which captures the total number

of distinct species observed; and (3) similarity, which measures the proportion of shared

species between two consecutive years of a study and reflects the stability of the species

composition. We refer to these measures collectively as biodiversity. We also construct other

standard biodiversity metrics widely used in ecology literature, such as Gini, Shannon, and

Sorensen indices.

Correlation. Next, we examine the correlation between these measures and economic

production. We use a standard panel fixed effects model with one of the biodiversity metrics

as the outcome variable, state GDP per capita as the regressor, and a set of location-taxon

fixed effects and year fixed effects.3 This panel data exercise documents a strong, negative

association between economic production and biodiversity outcomes: a one percent increase

in economic activity is associated with a 3.6 percent decrease in species abundance and 1.6

percent decrease in richness in a given sampling location. We also find that economic activity

is linked to reduced stability – a one percent increase in economic activity in a year decreases

the share of species common in two consecutive years by 10% – although this association

is imprecisely estimated. The precise quantitative implications of our findings will become

more evident as more studies at a macro scale become available.

3We use state per capita GDP to capture the intensity of economic output in the broad geographic area.
In the Appendix, we report robustness results using alternative definitions of economic activities, such as
state total GDP (without the normalization by population), or county total or per capital income measured
at the county level instead of the state level. We also report a robustness check using county GDP though
the measurement is only available after 2001 which covers 30% of our study sample.
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Our exercise also reveals a set of descriptive features of the correlation: First, the neg-

ative association between economic production and biodiversity appears to be widespread

across various taxa, including mammals, birds, amphibians, fish, and freshwater plants and

invertebrates. Second, there is substantial distributional heterogeneity, where the negative

association at the lowest decile of biodiversity is almost twice as large as the average. This

finding suggests that economic production may lead to biodiversity losses to a greater extent

in regions with lower biodiversity, consistent with the idea that biodiversity enhances ecosys-

tem resilience against adverse shocks (Hautier et al., 2015). Third, both the current shock

in economic production and longer-term production trajectory, such as the growth rate over

the past few years, matter for biodiversity outcomes.

Causality. Does production cause changes in biodiversity? The associational evidence

may be confounded by omitted factors correlated with both ecosystem outcomes and local

economic output. The direction of causation may also go in the reverse direction, for example,

if better ecosystem conditions lead to increased economic output through improved natural

resources for production or tourism.

To establish causality, we isolate changes in local economic production coming from

plausibly exogenous government actions. We exploit variation in local economic production

driven by U.S. military buildups, which are heavily influenced by geopolitical factors and

unexpected military events. This research strategy has been widely used in the empirical

macroeconomics literature to estimate the causal effect of government spending on total

economic output, i.e., the fiscal multiplier (Hall, 2009; Barro and Redlick, 2011; Ramey,

2011; Nakamura and Steinsson, 2018). Following Nakamura and Steinsson (2014), we exploit

systematic heterogeneity in a state’s receipt of federal military spending (and therefore in the

state’s output) in response to the national military shock. We find that increased production

resulting from military spending has a significant, negative effect on biodiversity outcomes.

The magnitude of the biodiversity-production link estimated using the quasi-experimental

variation is greater, but of the same order of magnitude as the panel correlational estimates.

We will provide additional discussion on effect sizes below.

Channels. Why does economic production worsen biodiversity? Our estimates encom-

pass various mechanisms – such as air and water pollution, land use changes, among other

factors – through which production can affect biodiversity. Disentangling all these mech-

anisms empirically is challenging; we focus on assessing the importance of one particular

channel: air pollution externalities associated with production.

Numerous studies have established the negative impact of air pollution on human health

(e.g., Chen et al., 2013; Dominici et al., 2014; Schlenker and Walker, 2016; Deryugina et al.,
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2019), but pollution’s detrimental effects may extend beyond the human population. For

example, pollution can harm avian species (Brown et al., 1997; Liang et al., 2020), cause the

acidification of lakes through emissions of sulfates and nitrates, which impacts freshwater

communities (Brönmark and Hansson, 2002), and alter habitat conditions, food supplies, or

species interactions (Agathokleous et al., 2020).4

We measure the importance of the air pollution channel in two steps. First, we produce

causal estimates of the elasticities between biodiversity outcomes and air pollution. We use a

research design that isolates variation in local pollution driven by transported pollution from

distant, upwind cities (e.g., Deryugina et al., 2019; Anderson, 2020). We show that “upwind

pollution” coming from areas over 300 km away generates substantial variation in local air

quality, and these imported pollution shocks cause reductions in local biodiversity outcomes.

Second, we estimate the impact of the military spending shocks on air pollution, and multiply

these estimates by the biodiversity-pollution elasticities we obtain from step one. Together,

these exercises give us the expected impact of the military shocks on biodiversity through

air pollution. We find that pollution accounts for 20-60 percent of the reduced form effect of

military shocks, suggesting air pollution is a first-order pathway underlying the production-

biodiversity link.

Besides pollution, another crucial channel that has received considerable attention in

the literature is land use (e.g., Noack et al., 2021; Madhok, 2023). We briefly explore this

channel, leveraging remote-sensing measurements of urbanization which are available for the

later half of our study sample. We present descriptive evidence indicating that escalated

urbanization correlates with a significant decrease in biodiversity outcomes.

Regulations. Since air pollution explains a large share of the external effects of produc-

tion on ecosystems, the final part of the paper considers the role of environmental regulations.

We investigate whether the environmental regulations implemented by the United States

to safeguard human health have also resulted in co-benefits for the protection of ecosystems.

We study the impact of the landmark Clean Air Act (CAA) implemented by the U.S. Envi-

ronmental Protection Agency, which set forth a set of nationwide standards for outdoor air

quality. Each year, counties across the U.S. are assessed against these standards, and those

that fail to comply are labeled as violating the standards (referred to as “nonattainment”).

Regulators impose extensive emission reduction mandates on jurisdictions that fail to meet

specified outdoor air quality benchmarks, resulting in significant decreases in local economic

production and improvements in air quality (e.g., Becker and Henderson, 2000; Greenstone,

4The present knowledge on the effects of air pollution on biodiversity is largely confined to studies con-
ducted in laboratories or focused on individual cases related to the toxicity of pollution exposure (Newman,
1979; Llacuna et al., 1993; Gilmour et al., 2001; Salmón et al., 2018).
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2002; Greenstone et al., 2012; Walker, 2013). We present novel findings that the CAA regu-

lations had a notable, positive impact on biodiversity outcomes: nonattainment designations

led to significant improvements in species abundance, richness, and stability.

Building upon our earlier findings on the role of land use changes, we further examine

protected areas policy – a widely adopted approach to land protection, which includes the

designation and management of national parks, wilderness areas, and nature reserves, among

others, to promote conservation (IUCN, 2021). Our analysis indicates that protected areas

policy may help to alleviate the negative effects of production shocks on the environment.

Massive wildlife losses in recent decades indicate a new age of human-caused mass ex-

tinction (e.g., Pimm et al., 2014; Ceballos et al., 2015), and highlight the pressing need to

consider the trade-offs between economic growth and conservation (Foster and Rosenzweig,

2003; Polasky et al., 2005; Frank and Schlenker, 2016; Jayachandran et al., 2017; Watson

et al., 2019). An emerging economics literature examines the coupling between the economy

and ecosystems. Some of this literature focuses on the value of ecosystems to society, such

as the value of vultures in mitigating human mortality and wolves in reducing car accidents

(Raynor et al., 2021; Frank and Schlenker, 2016). On the other hand there is a large share of

the literature studying on how economic activity affects ecosystems. Earlier work in this area

performed correlational studies at state or national levels on economic activity and broad

measures of biodiversity (Dietz and Adger, 2003; Czech et al., 2012). More recent work has

been increasingly focused on smaller spatial scales, a limited number of species, and narrower

economic activities of interest in order to leverage newly available granular data and quasi-

experimental variation in economic drivers (Asher et al., 2020; Li et al., 2020; Liang et al.,

2020; Cole et al., 2021; Garg and Shenoy, 2021; Noack et al., 2021; Strobl, 2021; Madhok,

2023).5

We advance this literature in several ways. First, we study the effects of economic

activity on biodiversity across a wide range of taxa such as birds, mammals, and plants

using actual measurements from the ecology literature. Second, we provide some of the first

causal estimates of the effects of economic activity by using quasi-random variation in local

GDP induced by changes in national military spending. Third, we provide new evidence that

particulate matter is a key mechanism behind the economic activity-biodiversity relationship

and that there appears to be heterogeneous effects on bird vs non-bird taxa.

While our estimates speak to causal effects for the species and ecosystems covered within

5For example, Asher et al. (2020), Garg and Shenoy (2021), and Madhok (2023) all study economic
development (e.g. roads) and forest cover in India, while Li et al. (2020), Liang et al. (2020), Noack et al.
(2021), Strobl (2021), and Cole et al. (2021) study how pesticides, pollution, and agricultural land use affects
birds.
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the BioTIME sample, broader quantitative applicability requires further comparative anal-

yses with studies of similar approach and scope. The issue of non-representativeness is a

ubiquitous problem with current observational ecosystem data, which includes BioTIME de-

spite it being a significant attempt to enhance coverage and internal consistency.6 With that

said, we provide a back-of-envelope calculation that lends credibility to our estimates: multi-

plying our estimated effect of production on bird abundance by the economic growth during

1990-2015 yields a similar estimated bird population decline as a recent published estimate

that North American bird populations fell by 13% during this time period (Rosenberg et al.,

2019).

Another clarification pertains to our interpretation of the causal effect of economic pro-

duction and the underlying exclusion restriction. Production is not increased in a vacuum,

but through technological change or changes in clean and dirty inputs. We take our es-

timates as encompassing all underlying channels that accompany the shift in production,

such as changes in pollution and land use. Although we cannot isolate all possible chan-

nels individually, we prioritize one specific channel (air pollution) and establish its causal

significance.

The rest of the paper is organized as follows. Section 2 describes data and measurement.

Section 3 reports the correlational analysis. Section 4 presents causal analysis. Section 5

discusses regulations. Section 6 concludes the paper.

2 Data and Measurement

2.1 The BioTIME Database

To help readers conceptualize the structure of the BioTIME database, we begin with a brief

description of two example studies included in BioTIME. We also use these examples at

other points in the paper to provide references when helpful.

Example Study 1: North American Breeding Bird Survey The North American

Breeding Bird Survey (BBS) is a long-term and large-scale monitoring program that tracks

the status and trends of North American bird populations (USGS, 2014). The BBS follows a

regular and consistent sampling (observing) protocol. Skilled bird observers collect observa-

tion data at the same stops along the roadside survey routes during the avian breeding season

6In economic analysis, reweighting by known population moments is a typical approach to address non-
representativeness. However, in our study context, this is not a viable solution since the lack of information
on population moments is precisely the issue.
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every year (June for the most part of the United States). Each survey route is approximately

24.5 miles long, with stops situated about a half mile apart. At each stop, a three-minute

point count is conducted. During the count, observers record every bird heard or seen within

a 0.25-mile radius. Surveys start one and a half hours before local sunrise and take about

five hours to complete. Over 4,100 survey routes are located across the continental United

States and Canada (Figure A.1). Hence for BBS, each survey route is a sampling location

in BioTIME. BBS is perhaps the most widely used data source in the study of birds; as of

this writing, it has been used in over 450 scientific publications.

Example Study 2: Sevilleta Long-Term Ecological Research Several studies in-

cluded in BioTIME are conducted under the Sevilleta Long-Term Ecological Research (SLTER)

Program at the Sevilleta National Wildlife Refuge in central New Mexico (Figure A.2). The

habitats, about 100,000 hectares in size, represent five regional biomes that extend through

much of the central and western United States and northern Mexico. One example study in

the program is its small mammals census, conducted from 1989 to 2008 (Friggens, 2008). In

this study, permanent trapping stations were used to collect observational data about small

mammals which were collected two to three times yearly across different seasons in multiple

habitats within the refuge. During the sampling period, trapping webs, each consisting of 120

permanently marked trapping stations, were deployed for three consecutive nights. Sherman

live traps (boxes that capture the animal without harming it) were placed at each station,

with four traps placed at the center of the web. Upon capture, each individual is marked

either permanently with tags or temporarily with Sharpies. There are 16,657 records for 27

distinct species covered in the study. The most commonly observed species is Dipodomys

merriami (Merriam’s kangaroo rat).

BioTIME has a number of features making it useful for our analysis. First, the studies

included in the dataset all maintained consistent sampling protocols over time, ensuring that

within-study variation in outcomes does not stem from changes in how species are detected

by the researchers (e.g., sighting versus trapping). Second, each study included in the panel

dataset has at least two years of sampling, and some studies span multiple decades. This

allows us to exploit within-study variation, and to control for any differences across studies

in sampling protocols with location fixed effects. Third, the dataset contains information on

about 40,000 unique species or genus at over 15,000 sampling locations, spanning a wide range

of biomes and ecosystems. While such coverage is by no means comprehensive compared to

the overall ecosystem, we believe the data let us gain by far the best understanding of which

kinds of organisms and biomes are affected by economic production.
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We make several sample restrictions. First, we focus on years after 1966 to line up with

our economic data. Second, we exclude marine ecosystem studies, which often take place tens

or hundreds of miles offshore and, thus, are difficult to link to measures of economic produc-

tion. Third, we aggregate the raw species sampling observations to the taxon-location-year

level. The included taxa are birds, fish, mammals, terrestrial invertebrates, freshwater in-

vertebrates, terrestrial plants, and freshwater plants.7 Fourth, we exclude less than 1% of

studies that did not report species abundance (i.e., counts of individuals) and only report

total species biomass or only an indicator for species presence so that we have a unified mea-

sure of abundance. We obtain virtually identical results if including these samples in richness

and similarity analyses. Last, we focus on studies in the United States. The United States

accounts for about three-quarters of the total observations in the dataset; the next largest

contributor, New Zealand, accounts for about 10 percent. Focusing on the United States

also allows us to implement several well-understood quasi-experiments in the causal analysis.

These sample restrictions give us a maximum of 66,418 taxon-location-year observations.

2.2 Measures of Biodiversity

Biodiversity is a multi-faceted concept. In this paper, we focus on three metrics: abundance,

species richness, and the Jaccard similarity index. In Section 3, we report sensitivity checks

using other common measures of biodiversity.

Abundance is the total number of individuals observed in a given taxon, at a given loca-

tion, in a given year. Abundance simply measures the pure quantity of individuals observed

and is agnostic about the types of species in the sample. It is worth noting that virtually

all studies examine closely related species that fall in the same taxon group. Therefore,

abundance is never measured by combining distant species, such as birds and fish.

Richness is the total number of unique species present in a given taxon, at a given

location, in a given year. This metric is agnostic about the composition of species or how

the composition of species has changed. For example, if there is an equal loss of native

species and introduction of invasive species, species richness will not change despite changes

in the composition of the ecosystem.

Jaccard similarity is an inverse measure of the amount of year-to-year species turnover in

a given taxon, at a given location, in a given year; thus, it provides a measure of compositional

changes. Let Sct be the set of species at some time t in taxon j and location c, and let n(·)
7Our raw sample also includes 30 reptile observations at one location, and one observation at a second

location. Given how little data we have on reptiles we drop them from the sample.

8



denote the cardinality of a set. The Jaccard similarity index is given by:

Jcjt =
n(Scjt+1 ∩ Scjt)

n(Scjt+1 ∪ Scjt)
,

the number of species in taxon j present at location c in both times t and t + 1 relative to

the number of species present in either of the two times. The index is bounded between zero

and one with lower values indicating some combination of loss of species, or the introduction

of new species between times t and t + 1. In the limiting case where Jcjt = 0, there are no

common species in times t and t+1 (but there still may be observed species at the location);

on the other hand, a similarity index value of Jcjt = 1 indicates that the exact same set of

species is present in times t and t+ 1 and there is no species turnover.

We highlight three points before proceeding. First, we use log abundance and log species

richness as outcomes in econometric analysis. This allows us to interpret our coefficients as

elasticities. We do not take a logarithm of the Jaccard similarity index since it is already a

ratio. Second, for the sake of brevity, we will henceforth refer to all three metrics together as

biodiversity, even though they are distinct concepts. When referring to them individually,

we make clear whether we are referring specifically to abundance, richness, or similarity.

Third, we interpret declines in the three measures as indicative of deteriorating biodiversity

outcomes. Our reasoning is that declines in these measures indicate reductions in populations

and diversity, and increases in the instability of species composition.

Summary Statistics Table 1 reports summary statistics calculated based on taxon-

location-year observations. Column 1 reports number of observations, which shows that

roughly 80 percent of our observations are birds. To make sure that our results are not

driven by a single taxon, we report two sets of results for our analyses: one uses the full

estimation sample including all species, and the other uses a subsample that excludes birds.

Our findings tend to be more pronounced for the sample that excludes birds.

Column 2 shows the mean and the standard deviation of abundance by taxa. The large

differences in abundance across taxa partly reflect differences in study scope as well as

sampling methods. For example, consider the North Temperate Lakes Long-Term Ecological

Research Program, a study that falls in the taxon category of “freshwater invertebrates.”

The study samples zooplankton at the deepest location of lakes in Madison, Wisconsin, by

pulling a conical net vertically through the water column, generating large abundance counts.

By contrast, most studies on mammals use Sherman traps, which capture individual animals

one at a time. For example, the small mammals study included in the SLTER in central
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New Mexico (Section 2.1) reports only 27 unique species despite its 20-year time span. As

previously noted, in all regression specifications we include taxon-by-location fixed effects to

ensure the identifying variation comes from year-to-year changes in biodiversity outcomes

and economic conditions, holding study protocols and taxon constant.

Columns 3 and 4 show the statistics for species richness and Jaccard similarity. Fresh-

water plants have the highest species richness, and mammals have the lowest richness. The

average Jaccard similarity index is 0.425 among all species, indicating that around half of

the species at a sampling location are observed in the next year of the study. The highest

species turnover (or the lowest similarity) takes place among mammals; the lowest species

turnover occurs among amphibians.

Figures 1 and 2 further break down these summary statistics. Figure 1 shows, by taxa, the

spatial distribution of sampling locations (upper panel), total number of sampling locations

(lower-left panel), and number of taxon-location-year observations (lower-right panel). In

practice, depending on the geographic scope of the study, many sampling locations may be

close to each other but they may follow different sampling protocols; an example is given

in the SLTER mammal study of Appendix Figure A.2. This explains why there appear to

be many sampling locations but limited overall geographic coverage, especially for non-bird

species. Because distinct sampling locations in the BioTIME data represent different study

protocols, in our primary analysis we treat them as separate cross-sectional units.

Figure 2 summarizes annual changes in abundance, species richness, and Jaccard simi-

larity. The scatterplot on the left shows that changes in abundance and species richness are

positively correlated; by contrast, their correlations with the change in the composition of

species represented by the Jaccard similarity index can be of either sign. The right panel

of Figure 2 shows the distributions of annual changes in the three biodiversity metrics. The

vast majority of the observations fall within plus or minus one log unit range.

2.3 Potential Sources of Bias

Some discussions on the features and limitations of the data are in order. In an “ideal”

scenario, we would randomly select a set of locations across the country and continuously

monitor the categories and quantities of all observed animal and plant species over time.

The monitoring technology adopted at each location would remain constant to ensure that

variations in species observations reflect genuine changes in the underlying biodiversity con-

ditions rather than changes in the monitoring procedure. The BioTIME dataset departs

from this ideal as it comprises observations for specific locations, years, and species that
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were the focus of ecological studies; though by construction, BioTIME only includes studies

that adopted fixed sampling protocols, many of these studies extend over several decades,

and as such, sampling technologies may have undergone changes over time.8 We next discuss

the implications of these departures.

Location Studies choose sites based on different objectives and criteria, and some studies

– especially those that study birds – tend to have larger geographic coverage than others

(Figure 1). Nonrandom geographic coverage is an intrinsic limitation of virtually all biodi-

versity data (Hortal et al., 2007; Geijzendorffer et al., 2016), and its impact on the external

validity of this study is uncertain. We note, however, that nonrandom location does not nec-

essarily pose a threat to internal validity: our research design links changes in biodiversity

outcomes to year-over-year variation in economic production within the same sampling site,

and therefore our conclusions are not biased by factors that are correlated with permanent

differences in economic production in the cross section (e.g., heavily forested areas tend to

have lower GDP but better biodiversity outcomes compared to urban areas).

Time Ecological studies cover different time periods, and we only observe biodiversity

measurements in years when the underlying study reports sampling results. Non-continuous

sampling may affect the internal validity of our estimates if there is endogenous sampling.

One potential concern is that economic conditions may affect whether a study starts, stops, or

is paused at a particular location. This may happen if, for example, strong economic growth

causes better scientific funding availability, or if studies are interrupted during recessions.

The impact of this type of selection on our estimates is ambiguous and depends on the

non-linearity of the impact of GDP.9 Alternatively, one might worry that a large economic

boost in an area may distress the local environment so much so that the scientists abandon

the sampling location; in this case, the sampling selection would cause us to understate the

negative impact of GDP as the worst consequences are not observed. Endogenous sampling

can be tested empirically in the same way one tests for nonrandom missingness and attrition,

and we discuss relevant exercises in Section 3.3.

8Unobservable differences in survey effort is a canonical challenge for reliability of biodiversity datasets.
For example, see Newbold (2010) and Ruete (2015) for discussions on survey effort biases in museum and
citizen science data.

9In principle, oversampling periods of high GDP, or undersampling periods of low GDP, would only bias
the average estimate when the “dosage” effect of GDP is nonlinear, i.e., the marginal effects of GDP differ
at high vs. low levels. Figure 3, Panel A shows some evidence that the effect of GDP is roughly linear for
all three biodiversity outcomes.
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Species Focus The data provide information only on species that are the subjects of

the underlying studies. For example, in the North American Breeding Bird Survey study,

observers record birds seen or heard, but do not record any information on other animals

or plants seen; in the Sevilleta Long-Term Ecological Research, the subjects of the study

are small mammals that are captured in Sherman box traps. An advantage of this feature

of the data is that it makes it straightforward to compute biodiversity indexes such as

abundance, richness, and similarities at the sampling site level for a specific taxon, as most

ecological studies examine closely related species that fall in the same taxon group.10 As

long as a study’s overall species focus remains fixed across years, our analysis will give rise

to internally valid estimates of how economic production affects biodiversity for the set of

species being studied.

There are two caveats when extrapolating our results to the population scope. First,

weights of sampled species in the data may not be proportional to their overall presence in

the nature (Gonzalez et al., 2016; Cardinale et al., 2018). Unfortunately, in the context of

biodiversity, there is a lack of population-based surveys of species representativeness to allow

for a census-based re-weighting exercise that is often feasible in economic research. Second,

the data cannot capture impacts on species not covered by the underlying ecological studies.

A deeper concern regards species spillovers, for example, if declines in observed predator

species open up niches in the ecosystem for new prey species to flourish (positive spillover),

or if the decline of keystone species adversely affects other species (negative spillover). These

changes will be captured to some degree through the Jaccard similarity index that measures

species turnover. We also note that these will be less of a concern for studies on birds and

some other freshwater plants and invertebrates that tend to employ broad sampling strategies

that cover large numbers if not all species in the respective taxon.

Sampling Technology By construction, BioTIME only includes studies that adopted

fixed sampling protocols, and therefore the sampling accuracy at a given sampling site is

expected to remain fixed. However, sampling bias may come from measurement errors in

the biodiversity variables, especially if the errors change over time in ways that are related

to trends in economic output. This may happen, for example, if sampling practices and

technologies changed over time due to technological improvement (e.g. better traps). This

would raise concerns about our findings if, conditional on our included fixed effects, the

spatial distribution of the adoption of improved practices and technologies happened to

10In fact, as we will further explain in Section 3.1, the unit of analysis of our study is a study location ×
taxa. That is, for the small number of studies that cover multiple taxa, we treat the same study location as
separate, taxa-specific observations, so that we would never measure biodiversity using distant species (e.g.,
adding together birds and fish).
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correlate with the spatial distribution of trends in economic output. In Section 3.3, we

describe tests that check stability of our estimates over time and across studies with different

time span. More broadly, we also look for the presence of extreme samples and test sensitivity

of our results to these outliers.

2.4 Other Economic and Environmental Data

We briefly describe the data sources from which we build the economic and environmental

variables. All sources we use are standard in the literature and are publicly available.

Economic Output We measure local changes in economic production using annual state

level per capita GDP from the Bureau of Economic Analysis (BEA) from 1966 to 2015. We

use state-level output measures throughout the paper to capture overall economic changes in

the area, so that our estimates do not reflect small-scale spatial displacement, for example,

when individual animals move to a nearby location in response to a rapid deterioration of the

local environment. The state level measure also allows us to match geographic resolution of

some key variables in the causal inference, such as the instrumental variable on state military

contracting spending.

In the Appendix we report robustness results for both of our correlational and causational

analyses using alternative definitions of economic activities, such as state total GDP (without

the normalization by population), or county total or per capital income measured at the

county level instead of the state level. We use county income instead of county GDP because

the latter is only available after 2001 which covers 30% of our sample. We do report a

robustness check within this subsample for the sake of transparency.

Military Spending State level annual military spending and federal prime contracting

data are from Nakamura and Steinsson (2014). The military spending data, sourced from the

U.S. Department of Defense from 1966 to 2006, contain all types of military purchases such

as purchase of aircraft and repairs of military facilities. These data are based on Department

of Defense DD-350 military procurement forms that document all types of military purchases

greater than a certain amount. In total, the data cover 90 percent of all military purchases in

the United States. The federal prime contracting data identify locations where the majority

of work was performed, so that one can attribute the economic production associated with

the procurement to the states. The national average military spending accounts for around

3 percent of GDP; this share varies widely across states, from 10 percent in Virginia to 1

percent in Oregon.
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Pollution Pollution data come from the Modern-Era Retrospective analysis for Research

and Applications, Version 2 (MERRA-2) reanalysis dataset maintained by the U.S. National

Aeronautics and Space Administration (NASA), where satellite and ground-based measure-

ments of aerosol optical depth (AOD) – a measure of the amount of particles in a column

of air between the top-of-atmosphere and the ground – are assimilated into Earth system

modeling (product ID: M2I3NXGAS Version 5.12.4). MERRA-2 provides daily measures of

AOD on a 30km-by-30km grid, approximately the same area as the average county.

Clean Air Act Nonattainment Designation Annual designation of attainment and

nonattainment areas are sourced from the U.S. Environmental Protection Agency (EPA)

Greenbook for years 1992 to 2015. The data contain designation information for six criteria

pollutants: PM2.5, PM10, O3, SO2, CO, and Pb. For a given pollutant, there may be multiple

versions of standards that differ, for example, by the target metric (average or maximum

concentration) or the year of initial promulgation (most pollution standards tighten over

time). There are in total 12 standards during our study period. A jurisdiction (mostly

county) can be in nonattainment with multiple standards in a given year. Figure 7 Panel B

plots the location of nonattainment areas as of year 2019.11

Land Cover We measure urbanization between 2001 and 2015 using satellite data on

land cover type from the Moderate Resolution Imaging Spectroradiometer (MODIS) plat-

form maintained by NASA. The MODIS land-cover-type product is based on an ensemble-

supervised classification algorithm (Friedl et al., 2010). The key inputs to the algorithm

include satellite-based measurements of surface reflectance and surface temperature. The

training data contain over 1,800 manually labeled sites (mostly obtained from Landsat satel-

lite imagery) around the world. We use the yearly Land Cover Type product (product ID:

MCD12C1), which classifies land cover into 17 types, such as urban and rainforest, at a

spatial resolution of 0.05 degrees (about 5,600 meters). We create an annual, longitudinal

measure of the share of urban land within a 50-km or 100-km radius, or the county of the

BioTIME sampling site.

11Each year, a jurisdiction’s past three-year air quality metrics are calculated using data from in situ
outdoor air pollution monitors within its administrative border. The calculated metrics, known as the “design
values”, are then compared with the national air quality standards. Nonattainment status is triggered when
a design value exceeds the corresponding standard. Most designations occur at the county level, although
nonattainment status can occasionally be assigned at a sub-county level or at a broader metropolitan-area
level.
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Conservation Protected Areas Spatial data on protected area are obtained from the

World Database on Protected Areas (WDPA). The data is in the form of a shapefile that

outlines the location of over 250,000 marine and terrestrial protected areas and the year

that protective measures were put in place for each area. To capture conservation efforts

in the vicinity of the sampling sites, we compute the share of land within a 50-km radius

of the sampling site that is under protection in each year. We also calculate the number of

discontiguous protected areas within this radius to measure fragmentation of the conservation

effort.

3 The Biodiversity-Production Association

3.1 Estimation Framework and Baseline Findings

We begin with a panel fixed effects regression model to estimate the within-location asso-

ciation between biodiversity outcomes and economic production. The workhorse regression

equation is

Ycjt = β · logGDPst + ηcj + ηt + εcjt (1)

Ycjt is one of the three biodiversity metrics at sampling location c for taxon j in year t. For

example, this may be the logged total number of birds observed at a particular sampling

location in a given year. The regressor of interest is logGDPst, which is the logged per capita

real GDP for the state-year. ηcj are location-by-taxa fixed effects; these are the key panel

fixed effects that ensure the identification is based on year-over-year changes in biodiversity

and economic development for the same sampling location and within species in the same

taxa (i.e., we are not comparing trees to birds or ants to mice). ηt denotes year fixed effects

to capture common shocks such as national recessions. εcjt is the error term. We cluster

standard errors at the state level. The key parameter of interest is β, which measures the

elasticity between GDP and our biodiversity metric of interest.

It is worth clarifying the unit of observation used in our panel estimation. The key

geographic unit is a sampling location c. A given ecological study may have multiple sampling

locations. The North American Breeding Bird Survey (Section 2.1, example study 1), for

example, covers over 4,100 bird-observing “routes” that the researchers revisit every year.

In BioTIME, each route is a sampling location identified uniquely by the route’s centroid

latitude and longitude. Some studies sample across multiple taxa at the same location,

such as the Sevilleta Long-Term Ecological Research Program (Section 2.1, example study

2), thus the cj subscripts. As we mentioned, a key advantage of BioTIME data is that
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the study inclusion criteria ensure there are consistent study protocols used within each

study conducted at the same sampling location. This means the year-over-year variation

in biodiversity outcomes within the same location-taxon likely reflects genuine changes in

underlying biodiversity measures, rather than changes in sampling methods. This feature

of the data is important for our empirical estimation because, conditional on location fixed

effects, it frees us from controlling for any changes in sampling practices that might be

influenced by economic conditions across time. Finally, the length of a time series of location-

taxon data in our dataset depends on changes in sampling protocols and the overall study

duration. If the sampling methodology changed during the course of the study, a new ID

is assigned so it is treated as a new observational unit. Our final estimation data are thus

an unbalanced, annual panel of sampling locations by taxon. The average sampling location

has data for 13 years (standard deviation = 10 years).

Baseline Findings Figure 3, Panel A reports the estimation results from equation (1).

The three columns correspond to species abundance, species richness, and Jaccard similarity.

We residualize the biodiversity metrics and log GDP with the fixed effects, and then plot one

against the other using a decile bin scatterplot. The slope of the fitted line thus represents

the OLS estimate β̂ of equation (1). Our results indicate negative, statistically significant,

and roughly linear effects of GDP on both abundance (estimated elasticity = -3.580, SE

= 1.353) and richness (estimated elasticity = -1.631, SE = 0.685). The effect of GDP on

similarity is negative but imprecisely estimated (estimated elasticity = -0.104, SE = 0.157).

A reduction in similarity implies that there are fewer species of the same type in a sampling

location compared to the previous year, due to either a loss of species or newly introduced

species.

It is inherently difficult for us to directly compare our effect size with the prior literature

due to the lack of similar studies. Here we provide one benchmark exercise where we calculate

the change in bird abundance implied by our estimates, and compare that with established

estimates of bird population decline. Recent work by Rosenberg et al. (2019) using the

North American Breeding Bird Survey – one ecological study included in BioTIME which

we described in Section 2.1 – estimated that bird population numbered around 8 billion in

1990, but had declined by about 1 billion by the end of 2015. To evaluate what fraction of

such decline might be attributable to economic production growth during the time period,

we estimate a modified version of equation (1) focusing on bird-related observations and with

GDP per capita as the regressor. This estimation yields an estimated coefficient of -0.167 log

units (representing a decline in the bird population) per $10,000 increase of GDP per capita.

Multiplying this coefficient by the average growth of real GDP per capita between 1990-2015
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suggests a decline of 1.04 billion birds, which is very close to the estimate in Rosenberg et al.

(2019).

3.2 Features of the Biodiversity-Production Association

Effects by Taxa Panel B of Figure 3 shows elasticity estimates separately by taxon, where

from left to right we report effects for amphibians, birds, fish, freshwater invertebrates, fresh-

water plants, mammals, terrestrial invertebrates, and terrestrial plants. We find that the

negative associations with GDP emerge not only for birds (which comprise of 80 percent of

our estimation sample), but for most of the taxon groups. Among amphibians and mammals,

significantly negative effects of GDP are detected for all three biodiversity metrics. In fol-

lowing analyses, we report both full-sample results, and a sub-sample version that excludes

birds.

Environmental Kuznets Relationship Panel C of Figure 3 shows elasticity estimates

by quintiles of the sampling area’s average (1966-2015) GDP per capita. We find that the

GDP-biodiversity elasticities do not vary substantially across overall levels of GDP. Thus,

there is thus limited evidence within our study scope that the GDP-biodiversity elasticity

follows an environmental Kuznets relationship (Grossman and Krueger, 1995; Andreoni and

Levinson, 2001; Harbaugh et al., 2002); rather, the negative effects of GDP persist across

different levels of economic development.

Distributional Heterogeneity Panel D of Figure 3 investigates distributional hetero-

geneity, showing results from quantile regressions. We consider a fixed-effects-residualized

version of equation (1), estimating regression quantiles using a residualized biodiversity met-

ric as the outcome, and the residualized log GDP per capita as the explanatory variable.

For each outcome, the horizontal line represents the average effect (i.e., the slope of the

fitted line in Panel A of Figure 3). For all three biodiversity outcomes, we find evidence that

effects are negative or zero at all quantiles, and we find heterogeneity in the size of the effect;

the negative effects of GDP are the largest at the lowest quantiles of the distributions of the

biodiversity metrics. This pattern suggests that economic development exacerbates biodiver-

sity losses in areas where biodiversity is already low. The heterogeneous effects also suggest

higher levels of biodiversity may increase resilience to adverse shocks to the ecosystem.

Sector-Specific Output In Table 2, we report specifications where we replace the aggre-

gate GDP measure in equation (1) with sector-specific income. We focus on six sectors. Two
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are well known to cause significant amounts of pollution: manufacturing (air pollution) and

mining (water pollution); two that physically alter the landscape: agriculture and logging;

and two that are related to economic activity within urban areas: construction and services.

Our results show large and consistent negative associations between manufacturing income

– indicative of greater manufacturing production – and biodiversity. We also find a negative

correlation between logging-related income and biodiversity metrics for non-bird species, and

a positive association for agriculture.12 This evidence suggests that industrial emission as a

byproduct of economic production may be an important driver of biodiversity trends. We

take a more detailed look at the role of pollution in Section 4.2.

Dynamics Our baseline analysis focuses on estimating the contemporaneous impact of

GDP on biodiversity. Here we consider several alternative specifications that explore poten-

tial dynamic effects. We begin with distributed lag specifications, augmenting equation (1)

with various lags of annual GDP. Appendix Figure A.3 reports dynamic specifications that

include up to five lags of GDP. We find that the static and dynamic specifications produce

similar estimates of the contemporaneous impact of GDP, whereas we do not find strong ev-

idence of lagged impacts. In Appendix Table A.8, we further consider a specification where

we include a lead term of GDP in addition to current year’s GDP. We find the “placebo”,

lead coefficient to be statistically insignificant and in general an order of magnitude smaller

than the main GDP effect size; once again, evidence on a lagged effect of GDP is inconclusive.

Another way to approach dynamics (and causality) is with a vector autoregression (VAR)

that treats both biodiversity and GDP as endogenous variables that are interdependent on

each other’s lags. We implement a VAR analysis adapted to our panel data setting using

the method developed in Love and Zicchino (2006). We estimate bi-variate, first-order panel

VARs with each of the three biodiversity outcomes and GDP as endogenous variables, and

with panel- and time-specific fixed effects.13

Appendix Figure A.4 summarizes the estimation results. The impulse response functions

12In Appendix Table A.1, we further examine the source of the positive correlation between agricultural
income and biodiversity. We propose two potential explanations: (1) increased farming activities which may
increase food sources for terrestrial animals, and (2) improved habitats from increased conservation efforts.
We show that: (1) the positive ag-biodiversity correlation is mainly driven by increases in income in the
crop and animal farming subsectors, and (2) using USDA data, that a state’s receipt of federal government
direct payments for conservation programs – including the Conservation Reserve Program, Agricultural
Conservation Easement Program, Environmental Quality Incentives Program, Conservation Stewardship
Program, Regional Conservation Partnership Program, and Conservation Technical Assistance – has a strong
positive correlation with biodiversity outcomes. We find no positive agriculture-biodiversity correlation once
conditioning on the conservation spending.

13Specifically, the estimation equation is as follows:

Ycjt = Ycjt−1A + ucj + ut + ecjt
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(IRFs) suggest that GDP has a significant, negative impacts on biodiversity outcomes; similar

to our reduced-form findings, the IRFs suggest that the effects concentrate on the first period,

while quickly converge to zero in about four periods. The IRFs suggest that the reverse

causation, i.e., the impacts of biodiversity outcomes on GDP, are positive, transient, but

insignificant, with effect sizes an order of magnitude smaller than the estimated effects of

GDP on biodiversity.

The dynamic models described above focus on the lagged effects of GDP shocks in the

near past. In Appendix Table A.9, we further explore the role of longer-run economic

trajectories, estimating alternative specifications where we replace the logged GDP variable

with various forms of GDP growth, including current growth rate, five-year moving average

rate, and/or five-year moving maximum rate. Even conditional on the effect of current

growth, we find large, negative effects of sustained trend of growth in the past years on

biodiversity (columns 2, 5, and 8), which is partially explained by years with a burst of

growth (columns 3, 6, 9). While we view these specifications as less well-identified than the

simple OLS regressions of equation (1), the evidence appears to suggest that biodiversity is

influenced by the trajectory of economic growth in addition to year-over-year shocks.

3.3 Sensitivity Checks

We describe robustness checks that correspond to concerns we laid out in Section 2.3.

Endogenous Sampling Appendix Table A.3 presents various “zero-stage” regressions

where we test if economic conditions influence sampling in any significant ways. First, in the

cross section of study locations, we test if the average GDP growth rate at the location can

predict the study span. Columns 1 shows the correlation is small: the point estimate suggests

that each percentage point increase in the average GDP growth (or about a 50 percent

increase relative to the mean rate) at the study location is associated with a 1.3 percent

increase in the study duration; the coefficient estimate is statistically insignificant. Second,

using the panel fixed effects regression framework outlined in equation (1), we test if year-

over-year changes in GDP (as well as lagged GDP) can predict when a study starts sampling

Notice the correspondence with our simple panel estimation equation (1): instead of modeling the biodiver-
sity outcome as a function of contemporaneous GDP, the panel VAR formulation assumes the biodiversity
outcome is a function of lagged GDP, and vice versa. The vector notation therefore represents a stacked
system of equations where Ycjt denotes a (1× 2) vector of dependent variables (e.g., log abundance and log
GDP per capita), ucj and ut are (1× 2) dependent-variable-specific location-by-taxa and year fixed effects,
and A is a (2 × 2) matrix of parameters to be estimated which is assumed to be homogeneous across all
cross-sectional units. We implement the computation using the GMM algorithm provided by Abrigo and
Love (2016).
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(columns 2 and 3), ends sampling (columns 4 and 5), and misses samplings (columns 6 and

7). We find no statistical evidence across the board that economic conditions can predict

sampling activities. Simply put, we find that economic conditions are not correlated with

the length of the study span, when studies began, when they ended, or when they missed

sampling.

Outliers and Large Deviations Biological specimen in certain studies may sometimes

contain large counts, although in Figure 2 we have shown that most year-over-year changes

in the biodiversity metrics fall within reasonable ranges. Appendix Table A.4 examines the

impact of outlier observations. We find that winsorizing extreme samples, defined as those

with the smallest and largest 1%, 5%, or 10% biodiversity outcomes, has little impacts on

our estimates. We also obtain similar estimates excluding samples that exhibit abnormally

large deviations in biodiversity outcomes, defined as those with over plus or minus 2, 3, or

4 standard deviations (SD) from the average year-over-year changes.

Measurement Quality Figure 1 shows that our data spans almost six decades. Ecolog-

ical sampling practices and technologies have likely changed over such a long time horizon

even if protocols have been reported to be held fixed. Without direct information on the

quality of biodiversity measurements, there is not much we can do to assess the implica-

tions of measurement errors that may exist in older studies. Appendix Table A.5 touches

on measurement quality differences by splitting our estimation data into studies that were

done in earlier vs. later periods. We first repeat our main estimation of the biodiversity-

GDP relationship separately for samples taken before versus after 1997, the median year of

sampling; in another test, we group studies by the first year of sampling, and then estimate

the biodiversity-GDP relationship separately for those started before versus after 1993, the

median of studies’ start years. We find that our main findings are statistically indistinguish-

able among these subsamples. We further stratify studies by their duration into those that

lasted less than 5 years, between 5 and 20 years, and over 20 years (roughly correspond-

ing to studies that fall below 25th, between 25th and 75th, and over 75th percentile of the

study duration distribution). We find some suggestive evidence that the biodiversity-GDP

link is more precisely estimated among longer-term studies – presumably those that are

on average larger in scale, more fully funded, and potentially adopting more sophisticated

measurements – although the gradient with respect to duration is not statistically signifi-

cant.14 Taken together, while these tests cannot directly quantify the influence of sampling

14This finding could provide insights into the significance of conducting long-term ecosystem monitoring to
enhance the dependability of monitoring outcomes. We are grateful to an anonymous reviewer who pointed
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quality on our estimates, they do suggest that differences in measurement quality are not a

first-order determinant of what we find in this study.

Alternative Biodiversity Measurements In our main analysis, we measure abundance

by summing up numbers of individuals observed in each taxa-location-year cell, and we

measure richness by counting the number of distinct species observed, regardless of the

distribution of individual counts across different species. For example, consider the North

American Breeding Bird Survey that we described in Section 2.1. Suppose a bird observer

sees 50 American Robins and 6 Northern cardinals on a survey route, then the abundance

metric of that sample is 56 and the richness metric is 2. These ways of measuring biodiversity

have shortcomings. For example, in computing species richness, it might seem natural to

up-weight cases where abundance is more evenly distributed across the species versus cases

where we observe the same number of species, but the abundance across species is much more

concentrated. The former may be a better representation of the true diversity of species.

We consider two alternative measures of species richness – the Gini index and Shannon

index – that take into account relative abundance information. Recall from Section 2.2 that

Sct is the set of species at location c and time t. Let nsct be the abundance of species s ∈ Sct.

We define relative abundance to be rsct = nsct∑
j∈Sct njct

, the share of a particular species out of

the total number of individuals. The Gini diversity index is given by

Gini Indexct =
1∑

s∈Sct r
2
sct

,

and the Shannon diversity index is given by

Shannon Indexct = exp

(
−
∑
s∈Sct

rsct × log rsct

)
.

Notice that the Gini diversity index is effectively an inverse Herfindahl–Hirschman index,

whereas the Shannon diversity index is analogous to entropy. Unlike species richness, which

considers only the total number of unique species presence, both Gini and Shannon diversity

measures adjust for the relative abundance of species. If relative abundance is identical

across all species in Sct, then species richness, Gini diversity, and Shannon diversity all yield

the same value. For example, if there is an equal share of 2 species in Sct, then all three

indices will be 2. If there is heterogeneity in relative abundance across locations, then the

Gini diversity and Shannon diversity measures give a lower value than species richness.

us to this important dimension of the ongoing discussion on the national accounting and measurement of
biological resources.
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Appendix Table A.6 shows that our species richness findings are similar using Gini Index

and Shannon Index. We also report results using the Sorensen index, which is a commonly

used measure of species similarity, as an alternative to the Jaccard similarity index.15

Geographic Unit of Analysis We use state level GDP to capture local economic output.

State is a focal level at which many economic outcomes and policy variables are measured.

States are large geographic areas, and this bears both pros and cons for our analysis. On

the positive side, using aggregate measurements of GDP ensures that our estimates do not

reflect small-scale spatial displacement, for example, if individual animals move to a nearby

location in response to opening of a new factory. This could be particularly relevant for

more mobile species such as birds. There are two potential downsides of using a state level

output measure. First, using state level GDP foregoes more localized economic variation that

could matter for biodiversity outcomes. Impacts of economic production may also exhibit

spatial heterogeneity: for example, it is possible that the ecological damage of production

differs across different ecosystems within the same state. Second, suppose species in a local

ecosystem (smaller than the size of a state) were already in a form of “equilibrium,” all the

available spaces (or “niches”) are filled up with different species, and they spread out until

they cannot anymore because of lack of resources or because other species are competing

with them for the same space. In this equilibrium, a disturbance in a given niche will not,

in the short run, lead to strong spatial displacement where species fill up that vacuum.

Appendix Table A.2 compares baseline results (panel I) with those if we instead use

county level output measure (panel II). Because county level GDP is available after 2001,

our county level specification covers 30% of the full sample. In panel III, we report another

version with county level income, which is available for the full sample period, instead as

the output measure. Comparing results in panels I and III, we get smaller OLS estimates,

especially with bird species; our 2SLS results using the military shock quasi-experiment

renders similar results whether we use state or county measures. We view these patterns

as broadly consistent with errors in local-scale output measurement for mobile species (e.g.,

attenuation bias when associating the exposure of bird species to economic production in

the very county where they are observed).

Appendix Table A.7 further reports results when we change the geographic unit of anal-

15The Sorensen similarity index is defined by

Sorensen Indexct =
2× n(Sct+1 ∩ Sct)

n(Sct+1 ∪ Sct) + n(Sct+1 ∩ Sct)
.

where Sct denotes the set of species at some time t in taxon j and location c, and n(·) denotes the cardinality
of a set.
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ysis in various ways. First, we repeat the county-level income OLS results from Appendix

Table A.2 for reference. Second, we use the concept of eco-region developed by the U.S.

Environmental Protection Agency, which divides the contiguous U.S. into 85 mutually ex-

clusive areas where ecosystems are similar. Appendix Figure A.5 provides a map of EPA

level-III eco-regions as of 2013. We define economic conditions by summing up income from

counties that fall within the boundary of each eco-region, which is used as the independent

variable in lieu of state GDP. Third, we report a series of robustness checks where we adopt a

spatial-binning approach that aggregates biodiversity outcomes into 3-km, 10-km, and 16-km

hexagon bins. Figure 1 shows that, depending on the geographic scope of the study, many

sampling locations may be close to each other. Because distinct sampling locations in the

BioTIME data represent different study protocols, in our primary analysis we treat them as

independent cross-sectional units even if they are very close to each other. A potential con-

cern is that we may overstate the effective amount of data due to spatial correlation. Hence,

the spatial binning approach aggregates out some spatial correlation, though it introduces

measurement error as samples collected using different protocols are simply “added up.”

We find that the estimation results using spatially binned data are attenuated with coarser

aggregation, though the qualitative conclusions hold up. For these non-standard geographic

delineations that do not obey state borders, only OLS results are reported as the military

shocks used for the 2SLS analysis are measured at the state level.

4 Causality and Mechanisms

The negative association between biodiversity and economic production may be subject to

endogeneity concerns. One might worry that unobserved factors, such as local extreme

weather, may correlate with both GDP and biodiversity (omitted variable bias); that errors

in economic measures and/or biodiversity outcomes may attenuate the elasticity estimates

(measurement error); and that biodiversity may itself cause changes in economic output

(reverse causality). In this section, we examine how biodiversity outcomes react to U.S.

national military expansions that are known to produce plausibly exogenous shocks to the

local production economy. We then present a framework to identify the pollution channel

using variation in local pollution driven by transported pollution from distant, upwind cities,

which cause reductions in local biodiversity outcomes.
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4.1 National Military Buildups Shocks

We exploit shocks to state GDP from changes in national military buildups. This strategy has

been widely used in the empirical macroeconomics literature to estimate the fiscal multiplier,

i.e., the causal effect of government spending on economic output (e.g., Hall, 2009; Barro

and Redlick, 2011; Ramey, 2011; Nakamura and Steinsson, 2014, 2018). Several features

of military buildups in the United States make it an attractive policy experiment in our

study setting. First, national military buildups are well-known to be driven by geopolitical

events such as the Vietnam War and the Soviet invasion of Afghanistan. The timing and

magnitude of these events are plausibly exogenous to biodiversity changes in the United

States. Second, because industries that produce military equipment are unevenly distributed

across the country, national changes in military buildups leads to greater military spending

in some states than in others. Figure 4 Panel A, adapted from Nakamura and Steinsson

(2014), plots each state’s military contract spending as a share of its GDP. We assign darker

lines to states with a higher share of state military spending during a base period (1966-1971

average). Note that there is substantial variation and persistent differences in the degree to

which national shocks (the blue line in the middle of the chart) translate to state-specific

shocks. We use this variation to tease out regional changes in economic output that are

attributable to national military spending shocks. Finally, military spending, such as repair

and maintenance of military facilities, strongly influences construction and manufacturing

output; these sectors are associated with substantial environmental externalities, and may

influence biodiversity outcomes.

We use the following equation to estimate the effect of military spending shocks on

biodiversity outcomes:

Ycjt = β ·
(
MS

GDP

)
state,1966−1971

×MSt + ηcj + ηt + εcjt, (2)

This equation mirrors the main estimation equation (1). On the right hand side, we

define the military spending shock as
(

MS
GDP

)
state,1966−1971 ×MSt, which is the initial (1966-

1971 average) military contract spending (MS) a state receives as a share of its GDP,

interacted with annual, national per capita military spending (MSt). As shown in Figure

4 Panel A, although the share of military spending to GDP changed over the years, the

initial share over the 1966-1971 period still captures systematically different sensitivities of

GDP to military spending shocks across states. The military spending shock variable thus

captures state heterogeneity in sensitivity to the national military buildups. The fixed effects

variables ηcj and ηt are defined as in equation (1).
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For this policy shock to be exogenous, we assume that the shock component – states’

relative differences in response to aggregate military buildups (which are themselves largely

driven by geopolitical factors) – are unlikely to be correlated with unobservable determinants

of local biodiversity. That is, we assume the United States will not increase national mili-

tary spending because states that receive larger military procurement contracts have worse

biodiversity.

Figure 4 Panel B presents the estimation results for the key coefficient of interest β,

the impact of the policy shocks on biodiversity outcomes. We use the same decile bin

scatterplots as Figure 3, except here the x-axis variable is fixed effects-residualized military

spending shocks. We display full-sample results for all species as well as subsample results

with non-bird species. For all three biodiversity outcomes, we find that military spending

shocks have a statistically significant negative effect on biodiversity. The chart also shows

that the negative effects of military spending shocks are larger for non-bird species for all

three biodiversity outcomes.

Table 3 summarizes these findings in more details. Column 1 repeats Nakamura and

Steinsson (2014) in our study sample and confirms the positive impact of the military spend-

ing shocks on state GDP. Columns 2 through 4 report changes in log abundance, log richness,

and similarity index from a one unit increase in the military spending shock variable.

To facilitate comparison of effect sizes with the OLS estimates in Section 3, in columns 5

through 7, we divide the estimates in columns 2 through 4 by that in column 1, converting

these estimates to the biodiversity-GDP scale using two-stage least squares (2SLS).16 In the

full sample (Panel A), we find that the implied GDP elasticities are -4.49 for the abundance

measure (SE=1.59), -2.75 for richness (SE=1.23), and -0.54 for similarity (SE=0.18). By way

of comparison, our OLS estimates of the GDP elasticities are -3.58 for abundance (SE=1.35),

-1.63 for richness (SE=0.69), and -0.10 for similarity (SE=0.16). Similarly, in the non-bird

subsample (Panel B), we find slightly larger biodiversity-GDP elasticity estimates than their

OLS counterparts.

Appendix Table A.10 reports a series of robustness checks where we (a) alter the con-

struction of the military spending shock variable by changing the baseline period of the

treatment variable construction from an initial-period average (1966-1971) to a long-term

average (1966-2006); (b) follow the original empirical specification in Nakamura and Steins-

16The first stage estimation has a Kleibergen-Paap F-statistics of about 7 in the full sample, and about
35 in the non-bird subsample. This difference is due to the fact that the non-bird sampling locations are
in states with higher military spending, and are more responsive to changes in national military buildups.
In addition, as shown in Figure 1, non-bird observations are more evenly distributed across the entire study
period, allowing the estimation to better exploit temporal variation in economic changes.
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son (2014) and construct military spending shocks as the fitted value of state spending on

national spending, allowing different sensitivity for each state; (c) use the limited information

maximum likelihood (LIML) estimator which is median-unbiased with weak instruments in

lieu of 2SLS; (d) add Census Division-specific decadal time trends to control for regional-

specific trends in addition to the fixed effects controls; and (e) replace state per capita GDP

with state total GDP, county total income, or county per capita income as the right hand

side measure of economic production. For succinctness, we only report biodiversity-GDP

elasticity estimates for these robustness checks. We tend to obtain smaller, though more

precise coefficient estimates when using total rather than per capita measures of economic

production. Overall, the results are robust to these specification changes.

A Note on Causal Interpretations We highlight three takeaway messages from this

analysis. First, biodiversity outcomes respond to shocks that are well-known to cause changes

in local economic activities. Because military shocks generate plausibly exogenous variation

in economic production, the findings improve upon the correlational evidence in Section 3.

Second, the implied biodiversity-GDP elasticities from the quasi-experiment are larger

than their OLS counterparts. By leveraging shocks in a 2SLS setting, the quasi-experiment-

based elasticity estimates alleviate classic measurement error and endogeneity problems.

However, the fact that the two methods produce elasticities of similar order of magnitude

adds confidence to the overall credibility of the estimates.

Third, we do not interpret the biodiversity-GDP elasticities as the causal effect of a ce-

teris paribus increase in production. GDP is an accounting concept and only varies because

of changes in real economic activities. Therefore, one cannot randomly assign GDP while

holding everything else constant. Instead, our estimates encompass the total effect of various

determinants of biodiversity – such as environmental pollution or habitat loss from changing

land use – that vary with economic production. Our analysis so far remains agnostic about

what are the underlying mechanisms that explain the observed biodiversity-GDP relation-

ship. We tackle that next in Section 4.2. In particular, we focus on the causal effect from air

pollution, which we show can be isolated out from other contributors to biodiversity changes.

4.2 The Pollution Channel

Our analysis proceeds as follows. We first present new evidence that air pollution – an

important byproduct of economic production that has well-understood impacts on human

health – is also a broad driver of biodiversity losses. Next, we use the estimated relationship

between biodiversity and pollution to estimate the share of the effect from military shocks
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in Section 4.1 that is due to pollution externalities.

Causal Effect of Air Pollution We begin by estimating the relationship between air

pollution and biodiversity. The most accurate measurement of air pollution comes from in

situ pollution monitors, but these ground measurements are taken only at a sparse set of

locations in the U.S., and the majority of those locations are at urbanized population centers.

To improve data coverage, we instead use remote sensing-based reanalysis measurements

of particulate matter pollution (Aerosol Optical Depth, or AOD) from the Modern-Era

Retrospective analysis for Research and Applications Version 2 (MERRA-2) provided by

NASA. The estimating equation once again mirrors our main equation (1), but with county’s

pollution as the explanatory variable of interest. The first row of Table 4 shows the results.

Across all biodiversity measures and both samples of all species and non-bird species, we find

strong and negative pollution-biodiversity associations, with larger elasticities for non-bird

species.

The challenge with attributing changes in biodiversity to pollution is that pollution may

be endogenous. There may be omitted factors driving variation in both pollution and bio-

diversity such as temperature and sunlight. There may also be reverse causality where

biodiversity, say of plant species, impacts local air quality through emission of volatile or-

ganic compounds. To get at causal effects of air pollution, we follow the recent literature and

use an instrumental variable (IV) strategy that teases out plausibly exogenous variation in

a county’s local air pollution attributable to transported pollution from upwind areas (e.g.,

Deryugina et al., 2019; Anderson, 2020). We then estimate 2SLS regressions of biodiver-

sity outcomes on local air pollution, instrumenting for local air pollution with this “upwind

pollution” variable.

To illustrate the procedure, we use Susquehanna, PA as an example of how we construct

the IV. The same procedure is applied to all counties in our dataset. First, we begin with

a daily panel dataset of air pollution in a set of counties whose pollution levels may affect

air quality in Susquehanna. Let C denote the set of contributing counties and |C| denote its

cardinality (i.e., the total number of counties in this set). For each county c and day t, we

calculate the angle φct between county c’s local wind direction and the vector pointing from

city c to Susquehanna (e.g., φct = 0 means county c is exactly upwind from Susquehanna

on day t). The IV for Susquehanna is a time-series variable constructed using the following

formula:

IVt =
1

|C|
∑
c∈C

max{0, cos(φct)} · Pollutionct ·
1/distancec

1/
∑

c∈C(1/distancec)
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where the max{0, cos(φct)} ·Pollutionct term is the vector component of air pollution in

city c on day t that is expected to move toward Susquehanna due to wind transport – we call

this “upwind pollution”.17 We assume that upwind pollution is zero if φct is greater than 90

degrees, i.e., wind in city c on day t blows away from the direction toward Susquehanna. The

last term is an inverse distance weight. The formula says that, on any date t, the IV is the

average of individual cities’ upwind pollution terms, inversely weighted by city c’s distance

to Susquehanna (distancec).

The choice of contributing counties C bears a bias-variance tradeoff. If we were to only

use counties that are very far away from Susquehanna, it would help with the exclusion

restriction assumption of the IV. That is, there is little reason for pollution variation in very

faraway counties to affect local biodiversity outcomes in Susquehanna, except for the fact

that transported pollution from these upwind counties contributes to changes in local air

quality. However, focusing on counties too far away hurts the first stage relevance of the

instrument because their impacts on local pollution is likely weak. We take the following steps

to address this bias-variance tradeoff. First, we restrict contributing counties to those that

are at least 300 km away from Susquehanna. Second, we employ a data-driven method that

selects the most predictive upwind counties in a “zero-stage” LASSO regression. Specifically,

before constructing the IV variable, we estimate the following equation and perform variable

selection using LASSO:

PollutionSusquehanna,t = λ0 +
∑

c∈{1,...,2996}

λc ·max{0, cos(φct)} · Pollutionct + εt

where the counties c that are selected by the LASSO procedure have a non-zero coefficient λc

and are included in our set of contributing counties C for Susquehanna, PA. For Susquehanna,

LASSO selects a subset of 54 upwind counties from a total of 2,996 counties that are at least

300 km away. We then conduct the IV construction outlined in the previous equation using

these 54 selected counties. We then apply this procedure to all counties in our data.

Figure 5 Panel A is an illustration of Susquehanna where we map out the location of the

selected counties and use a bubble graph to represent the λc coefficients from a post-LASSO

regression. Figure 5 Panel B is the union of selected upwind counties for all BioTIME

counties in Pennsylvania. Many predictive counties are just outside of the 300km buffer as

we might expect, but there are also ones from the Midwest or West, presumably due to

wind transport. Figure 5 Panel C shows decile bin scatterplots of the first stage and reduced

form regression results. There is a strong positive relationship between upwind pollution

17The cosine places more weight on pollution from upwind counties as their wind direction points more
toward Susquehanna.
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and local pollution for the full sample and the non-bird sample. Upwind pollution shocks

are negatively associated with all three biodiversity metrics and the relationship is stronger

for non-birds.

The second row of Table 4 shows our main IV results. All elasticities are negative, and

the IV and OLS estimates are generally quite similar in size, suggesting that endogeneity in

our setting is not severe.18 Comparing these estimates to the associational GDP elasticities

in Figure 3, the pollution elasticities are about half the size.

Overall vs. Pollution Effects With the causal biodiversity-pollution elasticity estimates

from Table 4, we now revisit our military spending quasi-experiment and calculate how much

of the effect was due to induced changes in pollution. We do this in two steps. First, our

reduced form estimates of the effect of the military spending in Section 4.1 provide the total

marginal effect of the policy on biodiversity: ∂biodiversity
∂military spending

. Second, we compare the total

effect to the partial effect of the policy through pollution: ∂biodiversity
∂pollution

· ∂pollution
∂military spending

. The

first term in the expression is the biodiversity-pollution elasticity estimated in Table 4. The

second term – the effect of the military spending shocks on air pollution – is straightforward

to estimate from the data, which we report in Appendix Figure A.6. As expected, military

spending increases pollution.

Figure 6 presents the decomposition. The gray bars show the total, reduced-form effect

of military shocks on biodiversity, and the blue bars show the effect through changes in

air pollution. Depending on whether we look at the full sample or non-birds, the effect of

pollution accounts for about one-fifth to up to two-thirds of the estimated total effect of the

policy.

The evidence thus suggests air pollution is a first-order pathway for how military spending

affects biodiversity but is not the only pathway. Military buildups are a general boost to

local economic production and may affect biodiversity through other channels such as land

use change. However, there are potential reasons for why we may be underestimating the

role of air pollution. First, we are measuring air pollution using satellites in order to have full

spatial coverage. If the satellite-derived estimates of particular matter suffer from classical

measurement error, then our pollution estimates will be attenuated. Second, by using a

18This is in contrast to papers in the pollution-health literature that often find causal estimates to be an
order of magnitude larger than OLS counterparts (e.g., Deschênes et al., 2017; Deryugina et al., 2019). One
explanation is that there are much more common determinants for pollution and human health than for
pollution and animal/plant species health. For example, employment conditions may directly affect both
pollution and health dynamics, but employment is much less likely to directly affect biodiversity except
through its impact on production and pollution. Therefore, pollution may be much less endogenous to
changes in biodiversity outcomes than to changes in human health.
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remote-sensing measure of pollution that is based on particulate pollution detection, we are

only estimating the impacts of particulate matter pollution. Although particulate matter is

often used as a proxy for overall air quality, it is not a perfect proxy for all air pollutants.

4.3 Land Use

Our current investigation primarily centers on the impact of air pollution, while other con-

tributing mechanisms are harder to establish causally. Here we examine an additional channel

that is frequently studied in the literature – land use changes – and present correlational

evidence to support our findings.

Habitat losses are widely accepted as major determinants of biodiversity decline (IUCN,

2021), and increased economic development and urbanization may result in destruction of

habitat. Here we briefly examine this relationship in our study context to briefly explore

alternative mechanisms, and to perform a validity test for whether our setting produces

results widely found in other parts of the literature.

We explore increasing urbanization of land as a potential driver of biodiversity losses.

This exercise leverages the fact that high-resolution satellite observations of urbanization

became available during the second half of our study period (post-2001). We use NASA’s

Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data (Section 2.4)

which allows us to directly measure the degree of urbanization near the sampling sites in

the BioTIME dataset, unlike GDP which is reported at a larger spatial scale. Our primary

measure of urbanization is the log amount of land within 50 kilometers of a sampling site

that falls under the MODIS urban classification. We also test the robustness of our results

using urbanization measured within 100 km of the site or within the county of the site.19

We then estimate the effect of urbanization on biodiversity outcomes using the identical

approach outlined in equation (1) where the variable of interest is the log land area that is

classified as urban in MODIS.

Appendix Table A.11 shows our results. The first row shows the urbanization elasticity of

biodiversity when focusing within a 50 kilometer radius, the second row is for a 100 kilometer

radius, and the third row is within the entire county. All elasticities are negative and large

for the measures of urbanization within 50 or 100 kilometers of the sampling site. The

magnitudes of the estimates shrink slightly going from the 50 kilometer measure to the most

aggregate 100 kilometer measure, consistent with urbanization near the sampling site being a

more important determinant of biodiversity. The estimates at the county-level are smallest,

19The average county has an area equivalent to a circle with a radius of about 30 kilometers.
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potentially because of measurement error: sampling sites may be near county boundaries

and not the county centroid, and counties do not necessarily have regular shapes. Overall,

the evidence suggests that increased urbanization is negatively associated with our three

measures of biodiversity, consistent with an extensive literature showing land use change

and habitat destruction is a major driver of biodiversity trends.

5 Environmental Regulations

The evidence on the role of air pollution and land use in the production-biodiversity link

raises the possibility that environmental regulations may provide policy maker another lever

for ecosystem conservation. In this section, we empirically test the impact of several land-

mark air pollution and land-use regulations in the BioTIME dataset.

5.1 Pollution Regulations

The Clean Air Act (CAA) is one of the first and most influential pieces of environmental

legislation in the United States, regulating air quality at the state, local, and plant levels

through a large number of individual programs. Our research design focuses on a major

amendment of the CAA that was adopted in 1990, when the National Ambient Air Quality

Standards established national criteria for outdoor air quality, targeting six widespread air

pollutants that harm public health.

A key component of the CAA program is its annual designation of compliance and non-

compliance status. Jurisdictions (mostly counties) in compliance with the air quality stan-

dards are designated “attainment” areas, whereas those in violation with the standards are

designated “nonattainment” areas. A nonattainment determination can be made for failing

to achieve one or more of the pollutant standards – PM2.5, PM10, ozone (O3), sulfur dioxide

(SO2), carbon monoxide (CO), and lead (Pb) – and/or for failing to meet one or more of

the versions of the standards for a given pollutant.20 A nonattainment designation triggers

substantially elevated regulatory scrutiny; the state government is required to implement

stringent regulations on the polluting industries. Such measures may include the installment

of expensive pollution abatement technologies, and the use of emission permitting programs

until air quality in the nonattainment area meets the standards. Figure 7 Panel A shows the

20Versions of standards reflect different target metrics or changes in regulatory stringency over time. For
example, the 1997 PM2.5 standard specifies an annual safety level of 15 ug/m3, whereas the 2006 PM2.5

standard specifies a 24-hour safety level of 35 ug/m3; the 2008 O3 standard (a daily maximum 8-hour
concentration of 0.075 ppm) is a more stringent version of the 1997 O3 standard (0.08 ppm).
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fraction of sampling locations in the BioTIME data that were in nonattainment areas with

respect to each of the standards.21 Figure 7 Panel B plots the location of nonattainment

counties and the number of standards being violated in each county as of year 2019.

We base our research design on two rich lines of environmental economics literature

that document the economic costs and the environmental benefits of the nonattainment

regulations. A nonattainment designation has been shown to reduce productivity and output,

and impose considerable compliance and fiscal costs on the local economy (e.g., Greenstone,

2002; Greenstone et al., 2012; Walker, 2013; Blundell et al., 2020; Shapiro and Walker, 2020;

Hollingsworth et al., 2022) while effectively reducing air pollution (e.g. Chay and Greenstone,

2005; Sanders et al., 2020; Hollingsworth et al., 2022).

We repeat the same analysis as we did for military spending in Section 4.1, but instead

with the number of nonattainment designations as our policy variable. Figure 7 Panel C

plots the results once again in the decile bin scatterplot form. All estimates indicate that

greater numbers of nonattainment designations, proxying for increased levels of regulatory

stringency and reduced local economic production, increase biodiversity.

Appendix Table A.12 provides additional details analogous to Table 3 for military spend-

ing. Column 1 shows that more stringent environmental regulations decrease GDP. We find

that one additional nonattainment designation reduces local GDP by about 3.8 percent in the

full sample and 5.3 percent in the non-bird subsample. The magnitude of this estimate is con-

sistent with prior evidence: for example, Greenstone et al. (2012) analyzes production data

from 1972-1993 Annual Survey of Manufacturers and finds that the NAAQS designations

have reduced total factor productivity by 4.8 percent for manufacturing plants. Columns 2

through 4 show the effects of the regulation shocks on biodiversity outcomes which corre-

spond to the bin scatterplots from Figure 7 Panel C. As before, we find that the effects are

larger for abundance and richness than and for similarity.

The implied production-biodiversity elasticities from the CAA shocks are in line with

those estimated in Section 4.1. Columns 5-7 report that the implied biodiversity-GDP

elasticity estimates are -5.93 for abundance (SE=0.62), -3.19 for richness (SE=0.27), and

-0.52 for similarity (SE=0.53). In Panel B, we repeat the same estimation using the non-bird

subsample. Similar to earlier findings, we find somewhat larger GDP elasticities for non-bird

species. Appendix Figure A.7 further shows that the pollution decomposition exercise also

gives similar results: about 20-60% of the reduced form effects of the CAA shocks came

through the causal effect of air pollution. The similarity in effect size estimates between the

21There are usually years of lag between the times when a pollutant standard was promulgated and when
the nonattainment designation actually occurred. For example, as shown in Figure 7 Panel B, the designation
of nonattainment status with respect to the 1997 PM2.5 standard did not occur until the year 2005.
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two sets of quasi-experiments adds confidence to our research design.

5.2 Land Use Policies

Given our earlier findings on the negative association of urbanization and biodiversity out-

comes, it is natural to ask whether land protection policies can help mitigate the adverse

effects of production shocks. Since early 1990s, adoption of conservation protected area poli-

cies has grown rapidly (Frank and Schlenker, 2016).22 Destruction of habitat is one of the

primary drivers of species decline (IUCN, 2021), but the literature has generally found that

protected areas — which cover nearly 15% of the Earth’s land and 10% of its water — have

had mixed results due to management issues, funding, resource exploitation, and ecological

connections to areas outside of the protected area that may be degrading (Leverington et al.,

2010; Laurance et al., 2012; Watson et al., 2014; Di Marco et al., 2019; Geldmann et al.,

2019).

To study the effects of protected areas, we use the standard data source from the World

Database on Protected Areas (WDPA). The WDPA is a geospatial database on over 250,000

marine and terrestrial protected areas. The database is in the form of a shapefile that outlines

the location of each protected area and the year the protected area was implemented. Figure

A.8 plots the location of these protected areas in the US. In each location-year, we compute

the total share of land and water within 50 km of the BioTIME sampling location that is

within at least one currently implemented protected area. We also compute the number

of spatially discontiguous protected areas within 50 km. After conditioning on the share

of protected land or water, this later variable helps us tease out the effect of protected

areas fragmentation holding the quantity of protected area fixed. We include this variable

following the recent conservation literature which has suggested that habitat fragmentation

has significant negative effects on biodiversity and the local ecology (Haddad et al., 2015;

Crooks et al., 2017; Newmark et al., 2017), implying that more fragmented configurations

of protected areas may be less effective than contiguous networks.

Lacking a quasi-experimental design, we report a correlational exercise in Table A.13,

which reports how protected areas modulate the panel correlation between GDP and biodi-

versity outcomes. Columns 1 and 2 show that the abundance-GDP relationship is attenuated

by an increase in the amount of nearby land that is protected.23 If the share of protected

22According to IUCN, protected areas include national parks, wilderness areas, community conserved
areas, nature reserves and so on. The areas are managed through legal or other effective means by both the
federal and local authorities.

23Regressions also include the main effect terms for the share of protected area (columns 1, 3, 5) and,
additionally, the number of discontinuous areas (columns 2, 4, 6).
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land and water within 50 km goes from zero (no conservation areas) to 100 percent, the

marginal effect of GDP halves. We estimate larger effects on non-bird species, where halv-

ing the marginal effect of GDP only requires having 15 percent to 50 percent of area in

protection. Consistent with prior evidence on fragmentation, column 2 shows that having a

more fragmented set of protected areas has the opposite effect. Columns 3 and 4 show that

protected areas have a noisy relationship with species richness, although the signs of the

effects are generally the same as for abundance. The results are overall similar for species

turnover (columns 5 and 6). In general, there is suggestive evidence that larger coverage

of contiguous protected areas reduces the negative impact of economic production on biodi-

versity. A caveat is that these findings are correlational in nature: protected areas are not

adopted randomly but may in fact be targeted at areas with high levels of biodiversity to

begin with, or areas that are seeing increasing developmental pressures.

6 Conclusion

This paper analyzes a compilation of studies that maintain longitudinal ecological observa-

tions spanning the last five decades and provides new insights on the environmental effects

of economic activity. First, the impacts of externalities extend well beyond affecting just

human health. Greater economic activity is broadly associated with reduced ecosystem di-

versity, including metrics that capture the number of individuals (abundance), the diversity

of species (richness), and the intertemporal stability of the composition of species (simi-

larity). This association is widespread across terrestrial, avian, and aquatic groups, and is

particularly strong when biodiversity conditions are already poor. Second, economic activity

causes biodiversity changes. We directly identify this causal impact by examining changes in

local economic activity resulting from national military buildups, which are largely driven by

plausibly exogeneous geo-political events. Third, air pollution externalities are a first-order

channel. Using an instrumental variables strategy that isolates exogenous local changes in

pollution caused by pollution transported from elsewhere, we find that air pollution neg-

atively affects biodiversity measures and air pollution explains a large share of the policy

effect of military buildups. Regulations that protect the environment – even though typ-

ically designed to safeguard human health – provided substantial co-benefits to ecosystem

conservation. This finding is highly relevant for policymaking, as species extinctions and

ecological degradation are accelerating to a degree unprecedented in human history.

By explicitly examining the link between GDP and measures of ecosystem diversity de-

rived from past ecological observations, this research helps shed light on the importance of
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broadly-scaled and long-term monitoring of the ecosystem, and how monitoring results can

be utilized to quantify the interconnection between the environment and the economy.

Our findings suggest several future promising lines of research. First, we find that air

pollution is one mechanism linking economic activity to biodiversity. However, there are

other consequences of economic activity – such as noise and water pollution – that may have

adverse effects on biodiversity but for which there are little or no causal studies. Second,

our paper does not quantify the economic value of the estimated changes in biodiversity.

For example, biodiversity has non-market value (e.g. Kolstoe and Cameron, 2017), and the

existence of keystone species has been shown to be important for human health (Frank and

Sudarshan, 2023). Future work estimating the costs of biodiversity loss will be valuable, es-

pecially understanding the costs of declines in particular species that are critical for healthy

ecosystem function. For example, non-market valuation methods can help us understand the

benefits park-goers receive from seeing rare or famous species, and quasi-experimental varia-

tion in biodiversity may help us understand its value as a productive input into agricultural

production.
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7 Figures and Tables

Figure 1: Sampling Locations and Observations

Notes: The upper panel plots sampling locations that are included in our main estimation sample. Loca-
tion points are distinguished by taxa and are aggregated to a 95-by-95 km hexagon resolution to increase
readability. The lower left panel reports number of sampling locations. The lower right panel reports total
number of location-taxon observations in each year.
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Figure 2: Year-Over-Year Variation in Species Abundance, Richness, and Similarity

Notes: All panels plot the coefficient estimates of our biodiversity metrics on a linear year time trend. The
black point in the left panel is the location mean change in species richness and abundance. The right panels
plot the marginal distributions of the time trend estimates for all three biodiversity metrics.
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Figure 3: The Biodiversity - GDP Association

(a) Average association

Abundance

slope = -3.580**
(1.353)

-.2
-.1

0
.1

.2
C

ha
ng

e 
in

 lo
g 

ab
un

da
nc

e

-.04 -.02 0 .02 .04
Change in log GDP per capita

Richness

slope = -1.631**
(0.685)

-.2
-.1

0
.1

.2
C

ha
ng

e 
in

 lo
g 

ric
hn

es
s

-.04 -.02 0 .02 .04
Change in log GDP per capita

Similarity

slope = -0.104
(0.157)

-.2
-.1

0
.1

.2
C

ha
ng

e 
in

 J
ac

ca
rd

 in
de

x

-.04 -.02 0 .02 .04
Change in log GDP per capita

(b) By taxa

-6
-4

-2
0

2
Ad

un
da

nc
e 

- G
D

P 
sl

op
e

A B F FI FP M TI TP
Taxa

-6
-4

-2
0

2
R

ic
hn

es
s 

- G
D

P 
sl

op
e

A B F FI FP M TI TP
Taxa

-1
.5

-1
-.5

0
.5

Ja
cc

ar
d 

in
de

x 
- G

D
P 

sl
op

e

A B F FI FP M TI TP
Taxa

(c) By sample-average GDP per capita
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(d) By regression quantiles
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Notes: Panel (a) plots decile bin scatterplots of biodiversity and log GDP, both residualized with location-

by-taxa and year fixed effects. The slope of the fitted line represents the OLS estimate β̂ of equation
(1). Numbers in parentheses show standard errors clustered at the state level. Panel (b)/(c)/(d) reports
heterogeneous OLS estimates by taxa/sample-average GDP per capita/regression quantiles. In panel (b),
abbreviations are for amphibians (A), birds (B), fish (F), freshwater invertebrates (FI), freshwater plants
(FP), mammal (M), terrestrial invertebrates (TI), and terrestrial plants (TP).
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Figure 4: Military Buildups and Biodiversity Outcomes

(a) Military contract spending as a share of state GDP
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Notes: Panel (a) is adapted from Nakamura and Steinsson (2014). The graph shows state’s annual prime
military contract spending as a fraction of its GDP. Each line represents a state. Darker lines indicate
states with a higher average military/GDP share between 1966 and 1971, the base period used to construct
the shift-share shock variable. The thick, blue line in the middle represents national average. Panel (b)
shows decile bin scatterplots of biodiversity and the military spending shock variable, both residualized with
location-by-taxa and year fixed effects. The dashed blue line displays all-species results, and the dashed gray
line displays subsample results with non-bird species.
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Figure 5: Instrumental Variables Estimation of the Effect of Air Pollution on Biodiversity

(a) Upwind pollution counties for Susquehanna, PA (b) Upwind pollution counties for all counties in PA

(c) Upwind pollution shocks, local pollution, and biodiversity outcomes
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Notes: Panel (a) highlights 54 counties selected by a “zero-stage” LASSO regression of Susquehanna County, PA’s daily aerosol pollution on all other
2,996 counties’ upwind component vector pollution. The size of each circle is approximately proportional to the contributing county’s post-LASSO
elasticity coefficient. Red (green) circles correspond to positive (negative) correlation. In panel (b), we take all PA counties included in the BioTIME
data, and highlight their LASSO-selected upwind pollution counties outside of the state of PA. Panel (c) shows decile bin scatterplots of local pollution
and biodiversity outcomes against the upwind pollution IV. All variables are residualized with location-by-taxa and year fixed effects. The dashed
blue line displays all-species results, and the dashed gray line displays subsample results with non-bird species.
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Figure 6: Military Buildups and Biodiversity Outcomes: Overall vs. Pollution Effects
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Notes: Bars and standard error range plots show the impacts of military buildup shocks on biodiversity outcomes. Blue bars (“pollution effects”)
indicate the predicted portion of the impacts that are explained by air pollution; these estimates are obtained by multiplying (i) the impacts of the
military buildup shocks on pollution with (ii) the IV estimates of the effect of pollution on biodiversity outcomes.
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Figure 7: Clean Air Act Regulations and Biodiversity Outcomes
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Notes: Panel (a) shows the fraction of BioTIME sampling locations that were in counties designated by the U.S. Environmental Pro-
tection Agency as in “nonattainment” with respect to various air pollutants. Panel (b) plots counties with Clean Air Act Nonattain-
ment or Maintenance designations with respect to the National Ambient Air Quality Standards (NAAQS) as of year 2019. Source:
https://www3.epa.gov/airquality/greenbook/map/mapnmpoll.pdf. Panel (c) shows decile bin scatterplots of biodiversity and the regulation shock
variable, both residualized with location-by-taxa and year fixed effects. The dashed blue line displays all-species results, and the dashed gray line
displays subsample results with non-bird species.
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Table 1: Summary Statistics

(1) (2) (3) (4)

Observations Abundance Richness Similarity

All species 66,418 39,132 15.44 0.425

[1,203,156] [19.62] [0.269]

Amphibians 45 2,563 7.267 0.943

[2,557] [2.526] [0.099]

Birds 51,695 216.8 18.43 0.419

[1,967] [20.5] [0.252]

Fish 804 1,405 16.07 0.702

[6,330] [8.501] [0.128]

Freshwater invertebrates 445 5,566,008 24.32 0.715

[13,599,038] [15.43] [0.144]

Freshwater plants 39 2,747,857 83.87 0.470

[1,193,869] [11.56] [0.045]

Mammals 5,658 21.18 1.91 0.316

[174.2] [1.958] [0.339]

Terrestrial invertebrates 6,071 53.32 3.912 0.446

[520.2] [11.12] [0.239]

Terrestrial plants 1,661 1,281 6.515 0.651

[8,296] [11.81] [0.317]

Notes: Column 1 reports total number of site-by-year observations in the estimation data that correspond
to different taxa groups. For biodiversity outcomes (columns 2-4), numbers show the means, and standard
deviations are in brackets.
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Table 2: Sector-Specific Income and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

Manufacturing -0.504** -0.366*** -0.021 -1.505*** -0.677*** -0.009
(0.198) (0.091) (0.023) (0.343) (0.154) (0.068)

Mining -0.063 -0.008 -0.012 -0.274 0.090 -0.138***
(0.045) (0.025) (0.011) (0.188) (0.071) (0.045)

Timber and Logging -0.021 -0.014 0.002 -0.287** -0.138** -0.007
(0.035) (0.021) (0.002) (0.114) (0.051) (0.008)

Agriculture -0.002 -0.012 0.009 0.638*** 0.126** 0.073***
(0.063) (0.023) (0.008) (0.158) (0.057) (0.017)

Construction 0.172 0.134 0.025 0.754 0.139 -0.075
(0.356) (0.090) (0.059) (0.628) (0.206) (0.132)

Services -0.187 -0.289 -0.031 0.278 0.099 -0.087
(0.558) (0.205) (0.060) (1.462) (0.372) (0.298)

Observations 59,651 59,651 46,746 13,809 13,809 12,613

Notes: Each column corresponds to a regression. Categorizations are based on 2-digit SIC and NAICS codes.
Sector income data are from U.S. Bureau of Economic Analysis 1969 to 2016. Agriculture includes farming,
fishing, and hunting. Services includes wholesale, retail, transportation, communications, electric, gas, and
sanitary services, finance, and all other service. Columns 1-3 reports full sample estimation. Columns 4-6
excludes observations that correspond to bird species. Standard errors are clustered at the state level. *:
p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 3: Military Spending Shocks and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6) (7)
Policy Effect Implied GDP Elasticity

GDP Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Military spending 0.299*** -1.341** -0.823** -0.164*** - - -
(0.110) (0.567) (0.354) (0.060) - - -

ĜDP - - - - -4.485*** -2.753** -0.535***
- - - - (1.594) (1.226) (0.183)

Kleibergen-Paap F-stat. - - - - 7.430 7.430 7.071
Observations 57,714 57,714 57,714 44,479 57,714 57,714 44,479

Panel B. Non-bird species

Military spending 0.528*** -3.286*** -1.685*** -0.360*** - - -
(0.087) (1.075) (0.624) (0.057) - - -

ĜDP - - - - -6.225*** -3.193*** -0.638***
- - - - (1.167) (0.732) (0.149)

Kleibergen-Paap F-stat. - - - - 37.05 37.05 34.46
Observations 11,861 11,861 11,861 10,335 11,861 11,861 10,335

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for similarity which is a ratio (columns 4 and 7). Military
spending shocks are national per capita procurement interacted with state’s 1966-1971 average military-GDP ratio. Columns 5 through 7 report
elasticity estimates of biodiversity outcomes with respect to GDP where the latter is instrumented for using military spending shocks in a 2SLS
regression. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird species. All regressions include location-
by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 4: Air Pollution and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

Pollution (OLS) -0.703*** -0.322** -0.074*** -2.072*** -1.020*** -0.070**
(0.215) (0.127) (0.027) (0.403) (0.253) (0.025)

̂Pollution (IV) -1.118** -0.565*** -0.084** -3.282*** -1.395*** -0.136
(0.430) (0.201) (0.037) (0.507) (0.230) (0.098)

Kleibergen-Paap F-stat. 271.0 271.0 224.0 208.2 208.2 319.4
Observations 53,496 53,496 41,058 12,726 12,726 11,599

Notes: Each cell corresponds to a regression. Outcome variables are in logs except for similarity which is a ratio (columns 3 and 6). Independent
variables are county’s annual logged Aerosol Optical Depth pollution level. The first row reports OLS regression estimates. The second row reports IV
regression estimates, using county’s upwind pollution shock as the instrumental variable for logged local pollution. The Kleibergen-Paap F-statistics
of the first stages are reported at the bottom of the table. Columns 1-3 reports full sample estimation. Columns 4-6 excludes observations that
correspond to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p <
0.10; **: p < 0.05; ***: p < 0.01.

54



Appendix Figures and Tables

Figure A.1: North American Breeding Bird Survey routes across the U.S. and Canada

Note: This figure is from Ziolkowski Jr et al. (2010). It shows the sample collecting routes in the North
American Breeding Bird Survey (BBS), which is one of the studies in the BioTIME database. The BBS is a
long-term and large-scale avian monitoring program that tracks the status and trends of North American bird
populations. Professional bird observers collect bird population data at the same stops along the roadside
survey routes during the avian breeding season every year. Over 4,100 survey routes are located across the
continental U.S. and Canada.
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Figure A.2: Sevilleta Long Term Ecological Research (SLTER) Program Map

Note: This figure is from the project overview for the Sevilleta Long Term Ecological Research (LTER)
Program at http://sevlter.unm.edu/. As shown in this figure, several studies included in BioTIME are
conducted under the Sevilleta Long Term Ecological Research (SLTER) Program at the 100,000 hectare
Sevilleta National Wildlife Refuge in central New Mexico. One study is the small mammals census from
1989 to 2008 (Friggens, 2008). There are 16,657 records for 27 distinct species covered in the study. Another
study focuses on terrestrial plants in this wildlife refuge Muldavin (2001) collects 5,288 records for 123
distinct species.
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Figure A.3: Dynamic Effects: Distributed Lag Models of the Biodiversity - GDP Relationship
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Notes: This figure plots coefficients when regressing biodiversity outcomes on the current and yearly lags
of GDP. Each line represents a separate regression with different numbers of lags. For each outcome, the
range bar shows point estimate and 95% confidence interval of the baseline, static specification with no lags
of GDP. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the
state level.
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Figure A.4: Dynamic Effects: Panel Vector Autoregression (VAR) Impulse Response Func-
tions

(a) Responses of biodiversity outcomes to GDP
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(b) Responses of GDP to biodiversity outcomes
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Notes: This figure plots orthogonalized impulse response functions from first-order panel vector autoregres-
sion (VAR). Three separate models are estimated for log GDP and log abundance (left column), log GDP and
log richness (middle column), and log GDP and Jaccard index (right column). VAR models are estimated
using GMM, with location-taxa fixed effects and time fixed effects removed prior to estimation, and with
standard errors clustered at the state level. The underlying panel Granger causality Wald test statistics are
13.6 (p <0.001), 22.2 (p <0.001), and 3.66 (p=0.056) for the three variables in panel (a); and 1.07 (p=0.301),
0.41 (p=0.522), and 15.4 (p <0.001) for the three variables in panel (b). Dashed lines show 95% confidence
intervals constructed from 200 Monte Carlo simulations.
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Figure A.5: Eco-regions of the Continental United States

Note: This map shows 85 Level III eco-regions – areas where ecosystems are generally similar – across the
continental U.S. as of April 2013. Source: U.S. Environmental Protection Agency.

59



Figure A.6: Air Quality Effects of Military Spending and Environmental Regulation Shocks
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Notes: These figures show decile bin scatterplots of local pollution against the military buildup shocks (left
panel) and the Clean Air Act regulation shocks (right panel). The underlying estimation follows equation
(1), regressing pollution on military spending shocks and on Clean Air regulation shocks in two separate
regressions. All variables are residualized with location-by-taxa and year fixed effects. Standard errors are
clustered at the state level.
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Figure A.7: Clean Air Act Regulations and Biodiversity Outcomes: Overall vs. Pollution Effects
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Notes: Bars and standard error range plots show the impacts of Clean Air Act regulation shocks on biodiversity outcomes. Blue bars (“pollution
effects”) indicate the predicted portion of the impacts that are explained by air pollution; these estimates are obtained by multiplying (i) the impacts
of the Clean Air Act regulation shocks on pollution with (ii) the IV estimates of the effect of pollution on biodiversity outcomes.
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Figure A.8: Location of Protected Areas

Notes: Green represents areas that were protected any time in the World Database on Protected Areas
(WDPA) sample.
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Table A.1: Agriculture Income and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

I. Subsectors of agriculture

Agricultural income: crop & animal farming 0.049 -0.014 0.010 0.758** 0.136 0.109**
(0.077) (0.027) (0.008) (0.304) (0.102) (0.044)

Agricultural income: fishing & hunting 0.011 0.003 -0.002 0.011 0.003 -0.015**
(0.008) (0.004) (0.003) (0.042) (0.019) (0.007)

Agricultural income: ag support -0.048 -0.012 0.007 -0.495 -0.197* 0.012
(0.120) (0.036) (0.015) (0.290) (0.101) (0.027)

II. Federal government conservation program spending

Agricultural income -0.019 -0.025 0.010 -0.214 -0.155 0.019
(0.075) (0.030) (0.010) (0.286) (0.100) (0.020)

Gov conservation spending 0.056 0.024* 0.003 0.382* 0.222*** 0.034
(0.035) (0.014) (0.005) (0.190) (0.070) (0.030)

Notes: All income and spending variables are in log. In panel I, agricultural income is broken down to crop & animal farming (NAICS = 111-112),
fishing & hunting (NAICS = 114), and ag support (NAICS = 115). In panel II, “Gov conservation spending” is federal government payments to the
state-year under conservation programs including the Conservation Reserve Program, Agricultural Conservation Easement Program, Environmental
Quality Incentives Program, Conservation Stewardship Program, Regional Conservation Partnership Program, and Conservation Technical Assistance.
Data are sourced from USDA. Columns 1-3 reports full sample estimation. Columns 4-6 excludes observations that correspond to bird species. Standard
errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.2: The Biodiversity - GDP relationship: State versus County Output Measurement

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

I. State Level GDP (coverage: 1969-2015)

OLS -3.580** -1.631** -0.104 -5.903*** -3.302*** -0.368
(1.353) (0.685) (0.157) (0.990) (0.271) (0.262)

2SLS -4.485*** -2.753** -0.535*** -6.225*** -3.193*** -0.638***
(1.594) (1.226) (0.183) (1.167) (0.732) (0.149)

Observations 57,714 57,714 44,479 11,861 11,861 10,335

II. County Level GDP (coverage: 2001-2015)

OLS 0.084 0.017 -0.121 -0.189 -0.683*** -0.342***
(0.262) (0.179) (0.090) (0.397) (0.185) (0.112)

2SLS -1.564 -1.248** -0.586*** -0.097 -0.760*** -0.573***
(1.064) (0.492) (0.156) (0.275) (0.157) (0.170)

Observations 17,575 17,575 14,837 4,106 4,106 4,063

III. County Level Income (coverage: 1969-2015)

OLS -0.697* -0.459** -0.026 -3.858*** -2.220*** -0.226
(0.381) (0.225) (0.033) (0.873) (0.255) (0.140)

2SLS -5.189*** -3.102*** -0.587*** -5.983*** -2.992*** -0.647**
(0.724) (0.505) (0.216) (0.511) (0.130) (0.284)

Observations 57,362 57,362 44,310 11,629 11,629 10,280

Notes: Each cell corresponds to a regression. Outcome variables are in logs except for similarity which is a
ratio (columns 3 and 6). Independent variables are different levels of measurement for economic production.
In panel I, the independent variable is the state annual level GDP per capita from 1969 to 2015 obtained
from the BEA, which is our baseline specification. In panel II, the independent variable is the BEA county
level GDP per capita, which is only available from 2001 onwards. In panel III, the independent variable
is the BEA county level income per capita from 1969 to 2015. For all panels, the first row reports OLS
regression estimates, and the second row reports IV regression estimates, using national military spending
shocks as the instrument. Columns 1-3 report full sample estimation, while columns 4-6 exclude observations
corresponding to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors
are clustered at the state level for panel I and at the county level for panels II and III. *: p < 0.10; **: p <
0.05; ***: p < 0.01.
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Table A.3: Economic Conditions and Biodiversity Sampling Activities

(1) (2) (3) (4) (5) (6) (7)
Log(study duration) 1(start year) 1(end year) 1(missed year)

GDP growth (%) 0.013 - - - - - -
(0.054) - - - - - -

GDPt - 0.031 0.391 -0.213 -0.371 0.133 0.171
- (0.057) (0.433) (0.128) (0.355) (0.118) (0.367)

GDPt-1 - - -0.408 - 0.169 - -0.036
- - (0.482) - (0.351) - (0.321)

Data structure cross-section panel panel panel panel panel panel
Observations 15,735 409,838 394,075 409,838 394,075 409,838 394,075

Notes: Estimation data underlying column 1 is a cross section of study locations. Columns 2 through 7 are based on balanced location-by-year panel
data. Outcome variables are log number of years of a study location (column 1), an indicator for the study location’s first sampling year (columns 2
and 3), an indicator for the study location’s last sampling year (columns 4 and 5), and an indicator for nonsampling in the corresponding location-year
(columns 6 and 7). GDPt−1 is the log of lagged one year GDP. All regressions include location-by-taxa fixed effects, and year fixed effects. Standard
errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.4: Economic Production and Biodiversity Outcomes: Robustness to Outliers

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

Winsorize samples with extreme levels

Within 1th-99th percentiles -3.580** -1.631** -0.104 -5.906*** -3.304*** -0.371
(1.353) (0.685) (0.157) (0.989) (0.271) (0.262)

Within 5th-95th percentiles -3.444** -1.580** -0.107 -5.713*** -3.232*** -0.372
(1.315) (0.673) (0.154) (0.986) (0.267) (0.254)

Within 10th-90th percentiles -3.145** -1.453** -0.111 -5.210*** -3.018*** -0.371
(1.219) (0.646) (0.148) (0.909) (0.255) (0.237)

Drop samples with extreme deviations

Within +/- 4 S.D. -4.446*** -2.398*** -0.146 -6.453*** -3.822*** -0.377*
(1.113) (0.586) (0.112) (0.389) (0.136) (0.202)

within +/- 3 S.D. -4.296*** -2.379*** -0.142 -6.293*** -3.798*** -0.373*
(1.078) (0.588) (0.108) (0.357) (0.159) (0.196)

Within +/- 2 S.D. -4.027*** -2.392*** -0.192* -6.131*** -4.051*** -0.437**
(0.997) (0.616) (0.111) (0.323) (0.168) (0.204)

Notes: Each cell corresponds to a separate regression, which follows equation 1. We report coefficients on
log per capita GDP. Outcome variables are in logs except for similarity which is a ratio (columns 3 and
6). Columns 1-3 report full sample estimation. Columns 4-6 exclude observations that correspond to bird
species. The top section winsorizes the respective biodiversity outcomes at each sampling location at 1st and
99th percentile, 5th and 95th percentiles, and 10th to 90th percentiles in the three rows. The bottom panel
truncates significant changes (greater than four/three/two standard deviations from the average change in
magnitude) in the biodiversity outcome at the year-to-year basis at a given sampling location. All regressions
include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10;
**: p < 0.05; ***: p < 0.01.
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Table A.5: The Biodiversity - GDP Relationship: Effects by Study Vintage and Duration

(1) (2) (3)
Abundance Richness Similarity

Panel A. By year of sampling

From 1961 to 1997 -3.311** -1.100 -0.227
(1.316) (0.918) (0.303)

From 1998 to 2015 -3.042*** -1.421*** -0.163
(0.901) (0.509) (0.174)

Observations (1961-1997) 22,603 22,603 12,683
Observations (1998-2015) 31,360 31,360 28,256

Panel B. By year when study began

From 1961 to 1993 -3.617*** -1.943*** 0.014
(1.027) (0.531) (0.111)

From 1994 to 2013 -3.358 -1.054 -0.074
(2.015) (1.079) (0.140)

Observations (1961-1993) 14,535 14,535 14,208
Observations (1994-2013) 40,352 40,352 28,198

Panel C. By study length

Duration ≥ 20y -4.325*** -2.371*** -0.073
(0.947) (0.436) (0.085)

Duration 5y to < 20y -4.165* -1.763* 0.072
(2.112) (0.959) (0.148)

Duration ≤ 5y 0.943 1.460 -0.235
(1.665) (1.498) (0.272)

Observations (≥ 20y) 12,658 12,658 12,643
Observations (5y to 20y) 26,799 26,799 23,210
Observations (≤ 5y) 15,450 15,450 6,572

Notes: Each cell represents a separate regression per equation (1). Each column corresponds to a different
biodiversity metric. Panel A reports separate regressions by before and after median year of sampling. Panel
B reports separate regressions by before and after median year of a study’s first year of sampling. Panel C
reports separate regressions corresponding to studies that fall below 25th, between 25th and 75th, and over
75th percentile of the study duration distribution. All regressions include location-by-taxa and year fixed
effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

67



Table A.6: Other Measures of Biodiversity

(1) (2) (3) (4) (5) (6)
Gini Shannon Sorensen Gini Shannon Sorensen

Panel A. All species Panel B. Non-bird species

GDP -1.845* -2.176** -0.213 -3.881*** -4.305*** -0.660**
(0.946) (1.021) (0.197) (0.630) (0.666) (0.269)

Observations 57,714 57,714 44,479 11,861 11,861 10,335

Notes: Each cell represents a separate regression. Each column corresponds to a different biodiversity metric:
the Gini index (columns 1 and 4), the Shannon index (columns 2 and 5), and the Sorensen similarity index
(columns 3 and 6). Panel A reports full sample estimation. Panel B excludes observations that correspond
to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered
at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.7: The Biodiversity - GDP Relationship: Alternative Unit of Analysis

(1) (2) (3) (4)

#Obs. Abundance Richness Similarity

Panel A. All species

Income at county 60,406 -0.697* -0.459** -0.026
(0.381) (0.225) (0.033)

Income at Level III Eco-region 60,343 -1.014 -0.714 0.077
(1.114) (0.531) (0.161)

Aggregation: 3-km hex. bin 11,915 -1.209*** -0.454*** -0.066
(0.325) (0.136) (0.062)

Aggregation: 10-km hex. bin 9,881 -0.887** -0.288* -0.061
(0.377) (0.154) (0.059)

Aggregation: 16-km hex. bin 8,896 -0.840** -0.206 -0.076
(0.379) (0.187) (0.055)

Panel B. Non-bird species

Income at county 14,306 -3.858*** -2.220*** -0.226
(0.873) (0.255) (0.140)

Income at Level III Eco-region 14,213 -3.369** -2.375*** -0.158
(1.524) (0.327) (0.306)

Aggregation: 3-km hex. bin 1,401 -1.699** -0.631** -0.261
(0.672) (0.271) (0.159)

Aggregation: 10-km hex. bin 923 -1.719** -0.586 -0.145
(0.798) (0.354) (0.145)

Aggregation: 16-km hex. bin 694 -1.417* -0.443 -0.132
(0.756) (0.518) (0.139)

Notes: This table reports the panel OLS estimation results using equation (1) when economic production is
measured at alternative geographic levels and when the data are aggregated up to hexagon bins of various
resolution. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird
species. All regressions include grid-by-taxa and year fixed effects. Standard errors are clustered at the
county (first row or each panel), eco-region (second row), and hexagon grid level (third to fifth rows). *: p <
0.10; **: p < 0.05; ***: p < 0.01.
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Table A.8: The Biodiversity - GDP Relationship: Dynamic Specification

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity

Panel A. All species

GDPt+1 - 0.655 - 0.269 - -0.106
- (0.848) - (0.607) - (0.120)

GDPt -3.580** -3.705*** -1.631** -2.246*** -0.104 0.271
(1.353) (1.199) (0.685) (0.671) (0.157) (0.271)

GDPt-1 - -1.006 - 0.417 - -0.377
- (0.760) - (0.661) - (0.445)

Observations 54,887 54,176 54,887 54,176 42,406 41,729

Panel B. Non-bird species

GDPt+1 - -0.229 - -0.776 - 0.091
- (3.322) - (1.551) - (0.164)

GDPt -5.903*** -5.754 -3.302*** -4.043 -0.368 0.392*
(0.990) (4.809) (0.271) (2.448) (0.262) (0.206)

GDPt-1 - -0.420 - 1.752 - -1.129**
- (1.364) - (1.191) - (0.415)

Observations 13,331 13,011 13,331 13,011 12,161 11,875

Notes: Outcome variables are in logs except for similarity which is a ratio (columns 5 and 6). GDPt−1 is
the log of lagged one year GDP. GDPt+1 is the log of GDP one year in the future. Panel A reports full
sample estimation. Panel B excludes observations that correspond to bird species. All regressions include
location-by-taxa fixed effects, and year fixed effects. Standard errors are clustered at the state level. *: p <
0.10; **: p < 0.05; ***: p < 0.01.
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Table A.9: The Biodiversity - GDP Growth Relationship

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Abundance Richness Similarity

Panel A. All species

GDP growth -3.00 -2.89* -2.48* -2.01 -1.98 -1.64 0.16 0.17 0.15
(2.30) (1.65) (1.35) (1.52) (1.36) (1.12) (0.31) (0.38) (0.38)

Avg. GDP growth -11.39* -3.60 -2.93 3.53 -1.09 -1.56
(last 5-y) (6.23) (6.35) (2.83) (3.83) (0.79) (1.15)

Max. GDP growth -7.68*** -6.36** 0.44
(last 5-y) (2.16) (2.46) (0.43)

Observations 37,644 37,644 37,644 37,644 37,644 37,644 33,789 33,789 33,789

Panel B. Non-bird species

GDP growth -6.24** -3.92*** -2.49** -5.06*** -3.98*** -3.32*** 0.32*** 0.67** 0.37*
(2.40) (1.26) (0.90) (1.39) (0.92) (0.79) (0.07) (0.25) (0.21)

Avg. GDP growth -26.10*** -10.26** -12.14*** -4.87** -4.16*** -7.77***
(last 5-y) (4.57) (3.75) (1.53) (1.74) (0.98) (1.38)

Max. GDP growth -9.83*** -4.51*** 2.28***
(last 5-y) (2.59) (1.30) (0.52)

Observations 11,236 11,236 11,236 11,236 11,236 11,236 10,443 10,443 10,443

Notes: Outcome variables are in logs except for similarity which is a ratio (columns 7-9). “GDP growth” is annual GDP per capita growth rate. “Avg.
GDP growth ” is the average GDP per capita growth rate for the past 5 years, from t-5 to t-1. “Max. GDP growth” is the maximum annual GDP
per capita growth rate in the past 5 years. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird species.
All regressions include location-by-taxa fixed effects and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05;
***: p < 0.01.
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Table A.10: Biodiversity-GDP Elasticity Estimates: Robustness Specifications

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

IV base period 1966-2006 -5.086** -3.127* -0.529*** -6.881*** -3.610*** -0.600***
(2.175) (1.649) (0.190) (0.652) (0.454) (0.098)
[6.035] [6.035] [6.186] [47.40] [47.40] [55.32]

Shocks × state FEs as IVs -4.575** -1.932* -0.218 -7.720*** -4.339*** -0.406***
(1.950) (1.031) (0.145) (0.555) (0.362) (0.085)
[1.794] [1.794] [2.168] [84.36] [84.36] [106.6]

Multiple IVs LIML -4.485*** -2.753** -0.535*** -6.225*** -3.193*** -0.638***
(1.594) (1.226) (0.183) (1.167) (0.732) (0.149)
[7.430] [7.430] [7.071] [37.05] [37.05] [34.46]

Census Division trends -5.844*** -3.049* -0.750*** -4.755*** -2.079*** -0.910***
(2.050) (1.554) (0.226) (0.764) (0.498) (0.236)
[6.509] [6.509] [7.034] [16.92] [16.92] [16.07]

Total state GDP -2.419*** -1.485** -0.301*** -4.370*** -2.241*** -0.469***
(0.852) (0.612) (0.105) (0.773) (0.499) (0.119)
[16.79] [16.79] [15.10] [37.10] [37.10] [32.94]

Total county income -2.328*** -1.392*** -0.288** -3.968*** -1.984*** -0.452**
(0.590) (0.370) (0.109) (0.368) (0.149) (0.210)
[14.83] [14.83] [13.65] [10.84] [10.84] [10.59]

Per capita county income -5.189*** -3.102*** -0.587** -5.983*** -2.992*** -0.647**
(1.174) (0.755) (0.241) (0.568) (0.160) (0.302)
[4.634] [4.634] [4.953] [9.213] [9.213] [9.967]

Notes: Each cell is a separate regression. Row names specify the robustness checks described in Section 4.1
and 5.1. This table reports the implied biodiversity-GDP elasticity estimates using military spending shocks
as the underlying source of policy variation. Numbers in brackets are Kleibergen-Paap F-statistics of the
first stage estimation. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p <
0.01.
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Table A.11: Urbanization and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity

Panel A. All species Panel B. Non-bird species

Urbanization (50-km radius) -11.91*** -6.39** -2.26 -16.67** -10.53** -5.24***
(4.01) (2.38) (1.54) (6.94) (3.71) (1.69)

Urbanization (100-km radius) -11.59*** -5.15*** -3.94*** -13.79*** -7.48*** -4.47***
(2.29) (1.53) (1.40) (2.87) (2.23) (0.99)

Urbanization (county) -1.73 -0.69 -0.29 -16.14*** -8.59*** -4.04
(1.36) (0.66) (0.38) (4.18) (1.56) (2.35)

Observations 19,611 19,611 17,188 6,830 6,830 6,752

Notes: Each cell corresponds to a regression. Outcome variables are in logs except for Similarity which is a ratio (columns 3 and 6). Independent
variables are logged urban areas within 50-km radius of the sampling location (first row), logged urban areas within 100-km radius of the sampling
location (second row), and logged urban areas of the county (third row). Columns 1-3 reports full sample estimation. Columns 4-6 excludes
observations that correspond to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state
level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.12: Environmental Regulation Shocks and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6) (7)
Policy Effect Implied GDP Elasticity

GDP Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Clean Air Act Nonattainment -0.038*** 0.226*** 0.121*** -0.020 - - -
(0.014) (0.080) (0.046) (0.018) - - -

ĜDP - - - - -5.932*** -3.194*** -0.519
- - - - (0.624) (0.268) (0.532)

Kleibergen-Paap F-stat. - - - - 7.841 7.841 8.874
Observations 54,887 54,887 54,887 42,406 54,887 54,887 42,406

Panel B. Non-bird species

Clean Air Act Nonattainment -0.053*** 0.373*** 0.193*** 0.371*** - - -
(0.007) (0.038) (0.025) (0.007) - - -

ĜDP - - - - -7.005*** -3.631*** -0.704***
- - - - (0.755) (0.250) (0.097)

Kleibergen-Paap F-stat. - - - - 50.57 50.57 49.56
Observations 13,331 13,331 13,331 12,161 13,331 13,331 12,161

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for similarity which is a ratio (columns 4 and 7). Clean
Air Act Nonattainment is the county’s number of nonattainment designations in the county-year. Columns 5 through 7 report elasticity estimates
of biodiversity outcomes with respect to GDP where the latter is instrumented for using nonattainment in a 2SLS regression. Panel A reports full
sample estimation. Panel B excludes observations that correspond to bird species. All regressions include location-by-taxa and year fixed effects.
Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.13: Conservation Policy and the Biodiversity - GDP Relationship: Protected Areas

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity

Panel A. All species

GDP -3.798*** -3.410*** -1.721** -1.490*** -0.219 -0.255*
(1.341) (1.142) (0.684) (0.611) (0.147) (0.140)

GDP × %Areas protected 1.765* 2.028* 0.732 0.892 0.890*** 0.864***
(1.023) (1.158) (0.500) (0.555) (0.252) (0.237)

GDP × #Fragmented areas - -0.206* - -0.144 - 0.023
- (0.108) - (0.088) - (0.015)

Observations 54,907 54,907 54,907 54,907 42,426 42,426

Panel B. Non-bird species

GDP -6.510*** -4.229*** -3.277*** -2.339*** -0.652*** -0.754***
(0.787) (0.813) (0.261) (0.436) (0.158) (0.087)

GDP × %Areas protected 7.484 13.976** -0.263 1.805 3.217** 3.520**
(4.812) (6.080) (0.938) (1.269) (1.237) (1.286)

GDP × #Fragmented areas - -0.731* - -0.147 - -0.115
- (0.418) - (0.139) - (0.088)

Observations 13,351 13,351 13,351 13,351 12,181 12,181

Notes: Outcome variables are in logs except for Similarity which is a ratio (columns 5 and 6). “%Areas protected” is the fraction of protected areas
within a 50km radius of the sampling location. “#Fragmented areas” is the number (in 1,000s) of discontiguous protected areas within 50km radius
of the sampling location. Smaller numbers of discontiguous areas indicate that each protected area is larger on average. Panel A reports full sample
estimation. Panel B excludes observations that correspond to bird species. All regressions include main effect terms, location-by-taxa fixed effects,
and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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